Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,9 +29,10 @@ data_melted["year"] = pd.to_numeric(data_melted["year"])
|
|
| 29 |
st.title("Global Child Mortality Rate (per 1000 children born)")
|
| 30 |
st.write("Dataset: Child Mortality")
|
| 31 |
st.dataframe(data)
|
|
|
|
|
|
|
| 32 |
st.write("""The following interactive visualization provides an insightful overview of child mortality rates (number of deaths per 1,000 live births) across countries for a selected year.
|
| 33 |
The data highlights disparities in healthcare, socioeconomic conditions, and development across the globe, making it a valuable tool for understanding global health challenges.""")
|
| 34 |
-
st.write("""Credits: https://www.gapminder.org/data/""")
|
| 35 |
# Add year selection
|
| 36 |
# years = sorted(data_melted["year"].unique()) # Extract unique years from the dataset
|
| 37 |
# selected_year = st.selectbox("Select Year", years)
|
|
|
|
| 29 |
st.title("Global Child Mortality Rate (per 1000 children born)")
|
| 30 |
st.write("Dataset: Child Mortality")
|
| 31 |
st.dataframe(data)
|
| 32 |
+
st.write("""Credits: https://www.gapminder.org/data/""")
|
| 33 |
+
|
| 34 |
st.write("""The following interactive visualization provides an insightful overview of child mortality rates (number of deaths per 1,000 live births) across countries for a selected year.
|
| 35 |
The data highlights disparities in healthcare, socioeconomic conditions, and development across the globe, making it a valuable tool for understanding global health challenges.""")
|
|
|
|
| 36 |
# Add year selection
|
| 37 |
# years = sorted(data_melted["year"].unique()) # Extract unique years from the dataset
|
| 38 |
# selected_year = st.selectbox("Select Year", years)
|