SmeetPatel commited on
Commit
0928186
·
verified ·
1 Parent(s): 014738f

New app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -0
app.py CHANGED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import sys
4
+
5
+ # Install plotly if not already installed
6
+ try:
7
+ import plotly
8
+ except ImportError:
9
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "plotly"])
10
+
11
+
12
+ # import subprocess
13
+ # import sys
14
+
15
+ import pandas as pd
16
+ import streamlit as st
17
+ import plotly.express as px
18
+
19
+
20
+
21
+ # Load Dataset
22
+ # Example: 'country' column for country names, other columns for years
23
+ data = pd.read_csv("child_mortality_0_5_year_olds_dying_per_1000_born.csv")
24
+
25
+ # Melt the data to long format for easier filtering
26
+ data_melted = data.melt(id_vars=["country"], var_name="year", value_name="mortality_rate")
27
+ data_melted["year"] = pd.to_numeric(data_melted["year"])
28
+
29
+ # Streamlit App
30
+ st.title("Global Child Mortality Rate (per 1000 children born)")
31
+ st.write("""This interactive visualization provides an insightful overview of child mortality rates (number of deaths per 1,000 live births) across countries for a selected year.
32
+ The data highlights disparities in healthcare, socioeconomic conditions, and development across the globe, making it a valuable tool for understanding global health challenges.""")
33
+
34
+ # Add year selection
35
+ # years = sorted(data_melted["year"].unique()) # Extract unique years from the dataset
36
+ # selected_year = st.selectbox("Select Year", years)
37
+ # Add year selection with a slider
38
+ min_year = int(data_melted["year"].min())
39
+ max_year = int(data_melted["year"].max())
40
+
41
+ st.subheader("Child Mortality Trends around the Globe")
42
+ st.write("""
43
+ This Chart reveals an important trend of how the child mortality rate have been changing across the years.
44
+ This gives us a very important insight on how the present developed countries have successfully reduced the rate, and underdeveloped countries still faces challenges to curb child mortality successfully.
45
+ We can utilise the trends in the graph to understand the factors which might be the responsible for high mortality or low mortality.
46
+ This will help the policymakers in developing/under-developed countries to develop data-driven policy to reduce child mortality.
47
+ """)
48
+
49
+ selected_year = st.slider("Select Year", min_value=min_year, max_value=max_year, value = 2024, step = 5)
50
+
51
+
52
+ # Filter data for the selected year
53
+ filtered_data = data_melted[data_melted["year"] == selected_year]
54
+
55
+
56
+ # Create the map
57
+ fig = px.choropleth(
58
+ filtered_data,
59
+ locations="country", # Country names or ISO 3166-1 Alpha-3 codes
60
+ locationmode="country names", # Use 'ISO-3' if you have country codes
61
+ color="mortality_rate",
62
+ title=f"Child Mortality Rate in {selected_year}",
63
+ color_continuous_scale=px.colors.sequential.OrRd, # Customize the color scale
64
+
65
+ )
66
+
67
+ # Display the map
68
+ st.plotly_chart(fig)