Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,12 +20,11 @@ import plotly.express as px
|
|
| 20 |
|
| 21 |
# Load Dataset
|
| 22 |
# Example: 'country' column for country names, other columns for years
|
| 23 |
-
data = pd.read_csv("child_mortality_0_5_year_olds_dying_per_1000_born.csv")
|
| 24 |
|
| 25 |
# Melt the data to long format for easier filtering
|
| 26 |
data_melted = data.melt(id_vars=["country"], var_name="year", value_name="mortality_rate")
|
| 27 |
data_melted["year"] = pd.to_numeric(data_melted["year"])
|
| 28 |
-
|
| 29 |
# Streamlit App
|
| 30 |
st.title("Global Child Mortality Rate (per 1000 children born)")
|
| 31 |
st.write("""This interactive visualization provides an insightful overview of child mortality rates (number of deaths per 1,000 live births) across countries for a selected year.
|
|
|
|
| 20 |
|
| 21 |
# Load Dataset
|
| 22 |
# Example: 'country' column for country names, other columns for years
|
| 23 |
+
data = pd.read_csv("https://huggingface.co/spaces/jiyachachan/fp2/resolve/main/child_mortality_0_5_year_olds_dying_per_1000_born.csv")
|
| 24 |
|
| 25 |
# Melt the data to long format for easier filtering
|
| 26 |
data_melted = data.melt(id_vars=["country"], var_name="year", value_name="mortality_rate")
|
| 27 |
data_melted["year"] = pd.to_numeric(data_melted["year"])
|
|
|
|
| 28 |
# Streamlit App
|
| 29 |
st.title("Global Child Mortality Rate (per 1000 children born)")
|
| 30 |
st.write("""This interactive visualization provides an insightful overview of child mortality rates (number of deaths per 1,000 live births) across countries for a selected year.
|