Spaces:
Runtime error
Runtime error
Add Gradio Blocks Interface and Complete the Space
Browse files
app.py
CHANGED
|
@@ -7,5 +7,162 @@ from pathlib import Path
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import from_pretrained_keras
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
model = from_pretrained_keras("bpHigh/Node2Vec_MovieLens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import from_pretrained_keras
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
import math
|
| 12 |
+
import networkx as nx
|
| 13 |
|
| 14 |
+
model = from_pretrained_keras("bpHigh/Node2Vec_MovieLens")
|
| 15 |
+
|
| 16 |
+
# Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
|
| 17 |
+
movielens_data_file_url = "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
|
| 18 |
+
movielens_zipped_file = keras.utils.get_file("ml-latest-small.zip", movielens_data_file_url, extract=False)
|
| 19 |
+
keras_datasets_path = Path(movielens_zipped_file).parents[0]
|
| 20 |
+
movielens_dir = keras_datasets_path / "ml-latest-small"
|
| 21 |
+
|
| 22 |
+
# Only extract the data the first time the script is run.
|
| 23 |
+
if not movielens_dir.exists():
|
| 24 |
+
with ZipFile(movielens_zipped_file, "r") as zip:
|
| 25 |
+
# Extract files
|
| 26 |
+
print("Extracting all the files now...")
|
| 27 |
+
zip.extractall(path=keras_datasets_path)
|
| 28 |
+
print("Done!")
|
| 29 |
+
|
| 30 |
+
# Read the Movies csv
|
| 31 |
+
movies = pd.read_csv(f"{movielens_dir}/movies.csv")
|
| 32 |
+
# Create a `movieId` string.
|
| 33 |
+
movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}")
|
| 34 |
+
|
| 35 |
+
# Load ratings to a DataFrame.
|
| 36 |
+
ratings = pd.read_csv(f"{movielens_dir}/ratings.csv")
|
| 37 |
+
# Convert the `ratings` to floating point
|
| 38 |
+
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))
|
| 39 |
+
# Create the `movie_id` string.
|
| 40 |
+
ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}")
|
| 41 |
+
|
| 42 |
+
# Implement two utility functions for the movies DataFrame.
|
| 43 |
+
def get_movie_title_by_id(movieId):
|
| 44 |
+
return list(movies[movies.movieId == movieId].title)[0]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_movie_id_by_title(title):
|
| 48 |
+
return list(movies[movies.title == title].movieId)[0]
|
| 49 |
+
|
| 50 |
+
# Create Weighted Edges between movies
|
| 51 |
+
min_rating = 5
|
| 52 |
+
pair_frequency = defaultdict(int)
|
| 53 |
+
item_frequency = defaultdict(int)
|
| 54 |
+
|
| 55 |
+
# Filter instances where rating is greater than or equal to min_rating.
|
| 56 |
+
rated_movies = ratings[ratings.rating >= min_rating]
|
| 57 |
+
# Group instances by user.
|
| 58 |
+
movies_grouped_by_users = list(rated_movies.groupby("userId"))
|
| 59 |
+
for group in movies_grouped_by_users:
|
| 60 |
+
# Get a list of movies rated by the user.
|
| 61 |
+
current_movies = list(group[1]["movieId"])
|
| 62 |
+
|
| 63 |
+
for i in range(len(current_movies)):
|
| 64 |
+
item_frequency[current_movies[i]] += 1
|
| 65 |
+
for j in range(i + 1, len(current_movies)):
|
| 66 |
+
x = min(current_movies[i], current_movies[j])
|
| 67 |
+
y = max(current_movies[i], current_movies[j])
|
| 68 |
+
pair_frequency[(x, y)] += 1
|
| 69 |
+
|
| 70 |
+
# Create the graph with the nodes and the edges
|
| 71 |
+
|
| 72 |
+
min_weight = 10
|
| 73 |
+
D = math.log(sum(item_frequency.values()))
|
| 74 |
+
|
| 75 |
+
# Create the movies undirected graph.
|
| 76 |
+
movies_graph = nx.Graph()
|
| 77 |
+
# Add weighted edges between movies.
|
| 78 |
+
# This automatically adds the movie nodes to the graph.
|
| 79 |
+
for pair in pair_frequency:
|
| 80 |
+
x, y = pair
|
| 81 |
+
xy_frequency = pair_frequency[pair]
|
| 82 |
+
x_frequency = item_frequency[x]
|
| 83 |
+
y_frequency = item_frequency[y]
|
| 84 |
+
pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D
|
| 85 |
+
weight = pmi * xy_frequency
|
| 86 |
+
# Only include edges with weight >= min_weight.
|
| 87 |
+
if weight >= min_weight:
|
| 88 |
+
movies_graph.add_edge(x, y, weight=weight)
|
| 89 |
+
# Create vocabulary and a mapping from tokens to integer indices
|
| 90 |
+
vocabulary = ["NA"] + list(movies_graph.nodes)
|
| 91 |
+
vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}
|
| 92 |
+
|
| 93 |
+
# Analyze the learnt embeddings.
|
| 94 |
+
movie_embeddings = model.get_layer("item_embeddings").get_weights()[0]
|
| 95 |
+
|
| 96 |
+
# Find Related Movies
|
| 97 |
+
movie_titles = list(movies['title'])
|
| 98 |
+
|
| 99 |
+
def find_related_movies(movie_title, k):
|
| 100 |
+
k = int(k)
|
| 101 |
+
query_embeddings = []
|
| 102 |
+
movieId = get_movie_id_by_title(movie_title)
|
| 103 |
+
token_id = vocabulary_lookup[movieId]
|
| 104 |
+
query_embedding = movie_embeddings[token_id]
|
| 105 |
+
query_embeddings.append(query_embedding)
|
| 106 |
+
query_embeddings = np.array(query_embeddings)
|
| 107 |
+
|
| 108 |
+
similarities = tf.linalg.matmul(
|
| 109 |
+
tf.math.l2_normalize(query_embeddings),
|
| 110 |
+
tf.math.l2_normalize(movie_embeddings),
|
| 111 |
+
transpose_b=True,
|
| 112 |
+
)
|
| 113 |
+
_, indices = tf.math.top_k(similarities, k)
|
| 114 |
+
indices = indices.numpy().tolist()
|
| 115 |
+
similar_tokens = indices[0]
|
| 116 |
+
related_movies = []
|
| 117 |
+
|
| 118 |
+
for token in similar_tokens:
|
| 119 |
+
similar_movieId = vocabulary[token]
|
| 120 |
+
similar_title = get_movie_title_by_id(similar_movieId)
|
| 121 |
+
related_movies.append(similar_title)
|
| 122 |
+
|
| 123 |
+
related_movies_df = pd.DataFrame({'Related Movies':related_movies})
|
| 124 |
+
return related_movies_df
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
demo = gr.Blocks()
|
| 129 |
+
with demo:
|
| 130 |
+
gr.Markdown("""
|
| 131 |
+
<div>
|
| 132 |
+
<h1 style='text-align: center'>Find Related Movies</h1>
|
| 133 |
+
Choose the specific movie from the dropdown and see the top k related Movies
|
| 134 |
+
|
| 135 |
+
Note: The dropdown menu provides movie options from the Movielens dataset.
|
| 136 |
+
</div>
|
| 137 |
+
""")
|
| 138 |
+
|
| 139 |
+
with gr.Box():
|
| 140 |
+
gr.Markdown(
|
| 141 |
+
"""
|
| 142 |
+
### Input
|
| 143 |
+
#### Select a movie to find other related movies.
|
| 144 |
+
""")
|
| 145 |
+
|
| 146 |
+
inp1 = gr.Dropdown(movie_titles)
|
| 147 |
+
gr.Markdown(
|
| 148 |
+
"""
|
| 149 |
+
<br>
|
| 150 |
+
""")
|
| 151 |
+
gr.Markdown(
|
| 152 |
+
"""
|
| 153 |
+
#### Number of related movies you wanna find?
|
| 154 |
+
""")
|
| 155 |
+
inp2 = gr.Number()
|
| 156 |
+
btn = gr.Button("Run")
|
| 157 |
+
|
| 158 |
+
with gr.Box():
|
| 159 |
+
gr.Markdown(
|
| 160 |
+
"""
|
| 161 |
+
### Output
|
| 162 |
+
#### Top K related movies.
|
| 163 |
+
""")
|
| 164 |
+
df1 = gr.DataFrame(headers=["title"], datatype=["str"], interactive=False)
|
| 165 |
+
|
| 166 |
+
btn.click(fn=find_related_movies, inputs=[inp1,inp2], outputs=df1)
|
| 167 |
+
|
| 168 |
+
demo.launch(debug=True)
|