lichorosario's picture
Update app.py
bc45bb2 verified
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import re
import math
import numpy as np
import traceback
# Load LoRAs from JSON file
def load_loras_from_file():
"""Load LoRA configurations from external JSON file."""
try:
with open('loras.json', 'r', encoding='utf-8') as f:
return json.load(f)
except FileNotFoundError:
print("Warning: loras.json file not found. Using empty list.")
return []
except json.JSONDecodeError as e:
print(f"Error parsing loras.json: {e}")
return []
# Load the LoRAs
loras = load_loras_from_file()
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "Qwen/Qwen-Image"
# Scheduler configuration from the Qwen-Image-Lightning repository
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
base_model, scheduler=scheduler, torch_dtype=dtype
).to(device)
# Lightning LoRA info (no global state)
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors"
LIGHTNING8_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors"
LIGHTNING_FP8_4STEPS_LORA_WEIGHT = "Qwen-Image-fp8-e4m3fn-Lightning-4steps-V1.0-bf16.safetensors"
MAX_SEED = np.iinfo(np.int32).max
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def get_image_size(aspect_ratio):
"""Converts aspect ratio string to width, height tuple."""
if aspect_ratio == "1:1":
return 1024, 1024
elif aspect_ratio == "16:9":
return 1152, 640
elif aspect_ratio == "9:16":
return 640, 1152
elif aspect_ratio == "4:3":
return 1024, 768
elif aspect_ratio == "3:4":
return 768, 1024
elif aspect_ratio == "3:2":
return 1024, 688
elif aspect_ratio == "2:3":
return 688, 1024
elif aspect_ratio == "4:1":
return 2560, 640
elif aspect_ratio == "3:1":
return 1920, 640
elif aspect_ratio == "2:1":
return 1280, 640
else:
return 1024, 1024
def update_selection(evt: gr.SelectData, aspect_ratio):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
# Get model card examples
examples_list = []
try:
model_card = ModelCard.load(lora_repo)
widget_data = model_card.data.get("widget", [])
if widget_data and len(widget_data) > 0:
# Get examples from widget data
for example in widget_data[:4]:
if "output" in example and "url" in example["output"]:
image_url = f"https://huggingface.co/{lora_repo}/resolve/main/{example['output']['url']}"
prompt_text = example.get("text", "")
examples_list.append([prompt_text])
except Exception as e:
print(f"Could not load model card for {lora_repo}: {e}")
# Update aspect ratio if specified in LoRA config
# if "aspect" in selected_lora:
# if selected_lora["aspect"] == "portrait":
# aspect_ratio = "9:16"
# elif selected_lora["aspect"] == "landscape":
# aspect_ratio = "16:9"
# elif selected_lora["aspect"] == "square":
# aspect_ratio = "1:1"
# else:
# aspect_ratio = selected_lora["aspect"]
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
aspect_ratio,
gr.update(interactive=True)
)
def handle_speed_mode(speed_mode):
"""Update UI based on speed/quality toggle."""
if speed_mode == "light 4":
return gr.update(value="Light mode (4 steps) selected"), 4, 1.0
elif speed_mode == "light 4 fp8":
return gr.update(value="Light mode (4 steps fp8) selected"), 4, 1.0
elif speed_mode == "light 8":
return gr.update(value="Light mode (8 steps) selected"), 8, 1.0
else:
return gr.update(value="Normal quality (45 steps) selected"), 45, 3.5
@spaces.GPU(duration=70)
def generate_image(
prompt_mash,
steps,
seed,
cfg_scale,
width,
height,
lora_scale,
negative_prompt="",
num_images=1,
):
pipe.to("cuda")
# Seeds y generadores (seed, seed+100, ...)
seeds = [seed + (i * 100) for i in range(num_images)]
generators = [torch.Generator(device="cuda").manual_seed(s) for s in seeds]
with calculateDuration("Generating image"):
result = pipe(
prompt=prompt_mash,
negative_prompt=negative_prompt,
num_inference_steps=steps,
true_cfg_scale=cfg_scale, # Qwen-Image
width=width,
height=height,
num_images_per_prompt=num_images, # 👈 una sola vez
generator=generators, # lista de generators
)
# Devolver SIEMPRE lista de (imagen, seed)
images = [(img, s) for img, s in zip(result.images, seeds)]
return images
@spaces.GPU(duration=70)
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, quality_multiplier, quantity, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Prepare prompt with trigger word
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Always unload any existing LoRAs first to avoid conflicts
with calculateDuration("Unloading existing LoRAs"):
pipe.unload_lora_weights()
# Load LoRAs based on speed mode
if speed_mode == "light 4":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
elif speed_mode == "light 4 fp8":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING_FP8_4STEPS_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
elif speed_mode == "light 8":
with calculateDuration("Loading Lightning LoRA and style LoRA"):
# Load Lightning LoRA first
pipe.load_lora_weights(
LIGHTNING_LORA_REPO,
weight_name=LIGHTNING8_LORA_WEIGHT,
adapter_name="lightning"
)
# Load the selected style LoRA
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their weights
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
else:
# Quality mode - only load the style LoRA
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
weight_name = selected_lora.get("weights", None)
pipe.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True,
adapter_name="style"
)
pipe.set_adapters(["style"], adapter_weights=[lora_scale])
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Get image dimensions from aspect ratio
width, height = get_image_size(aspect_ratio)
# Apply quality multiplier
multiplier = float(quality_multiplier.replace('x', ''))
width = int(width * multiplier)
height = int(height * multiplier)
# quantity es índice (0..3) -> cantidad (1..4)
num_images = int(quantity) + 1
# Generar
pairs = generate_image(
prompt_mash,
steps,
seed,
cfg_scale,
width,
height,
lora_scale,
negative_prompt="", # ajustá si usás uno real
num_images=num_images,
)
# Formatear para Gallery: (img, "Seed: N")
#images_for_gallery = [(img, f"Seed: {s}") for (img, s) in pairs]
# images_for_gallery = [
# (
# img,
# s
# )
# for (img, s) in pairs
# ]
images_for_gallery = [
(img, str(s))
for (img, s) in pairs
]
# Debe devolver DOS valores porque outputs=[result, seed]
return images_for_gallery, seed
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
print(f"Repository attempted: {split_link}")
# Load model card
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
# Validate model type (for Qwen-Image)
acceptable_models = {"Qwen/Qwen-Image"}
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(model in acceptable_models for model in models_to_check):
raise Exception("Not a Qwen-Image LoRA!")
# Extract image and trigger word
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
# Initialize Hugging Face file system
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
# Find safetensors file
safetensors_name = None
for file in list_of_files:
filename = file.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_name = filename
break
if not safetensors_name:
raise Exception("No valid *.safetensors file found in the repository.")
except Exception as e:
print(e)
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
print(f"Checking a custom model on: {link}")
if link.endswith('.safetensors'):
if 'huggingface.co' in link:
parts = link.split('/')
try:
hf_index = parts.index('huggingface.co')
username = parts[hf_index + 1]
repo_name = parts[hf_index + 2]
repo = f"{username}/{repo_name}"
safetensors_name = parts[-1]
try:
model_card = ModelCard.load(repo)
trigger_word = model_card.data.get("instance_prompt", "")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
except:
trigger_word = ""
image_url = None
return repo_name, repo, safetensors_name, trigger_word, image_url
except:
raise Exception("Invalid safetensors URL format")
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
# Get model card examples for custom LoRA
model_card_examples = ""
try:
model_card = ModelCard.load(repo)
widget_data = model_card.data.get("widget", [])
if widget_data and len(widget_data) > 0:
examples_html = '<div style="margin-top: 10px;">'
examples_html += '<h4 style="margin-bottom: 8px; font-size: 0.9em;">Sample Images:</h4>'
examples_html += '<div style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 8px;">'
for i, example in enumerate(widget_data[:4]):
if "output" in example and "url" in example["output"]:
image_url = f"https://huggingface.co/{repo}/resolve/main/{example['output']['url']}"
caption = example.get("text", f"Example {i+1}")
examples_html += f'''
<div style="text-align: center;">
<img src="{image_url}" style="width: 100%; height: auto; border-radius: 4px;" />
<p style="font-size: 0.7em; margin: 2px 0;">{caption[:30]}{'...' if len(caption) > 30 else ''}</p>
</div>
'''
examples_html += '</div></div>'
model_card_examples = examples_html
except Exception as e:
print(f"Could not load model card examples for custom LoRA: {e}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
{model_card_examples}
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
loras.append(new_item)
existing_item_index = len(loras) - 1 # Get the actual index after adding
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word, gr.update(interactive=True)
except Exception as e:
full_traceback = traceback.format_exc()
print(f"Full traceback:\n{full_traceback}")
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, "", gr.update(interactive=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "", gr.update(interactive=False)
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "", gr.update(interactive=False)
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<img src=\"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png\" alt=\"Qwen-Image\" style=\"width: 280px; margin: 0 auto\">
<h3 style=\"margin-top: -10px\">LoRA🦜 ChoquinLabs Explorer</h3>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn", interactive=False)
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
examples_component = gr.Examples(examples=[], inputs=[prompt], label="Sample Prompts", visible=False)
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/qwen-image-custom-lora")
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Gallery(label="Generated Images", show_label=True, elem_id="result_gallery")
with gr.Row():
with gr.Column():
speed_mode = gr.Radio(
label="Generation Mode",
choices=["light 4", "light 4 fp8", "light 8", "normal"],
value="light 4",
info="'light' modes use Lightning LoRA for faster generation"
)
with gr.Column():
quantity = gr.Radio(
label="Quantity",
choices=["1", "2", "3", "4"],
value="1",
type="index"
)
speed_status = gr.Markdown("Quality mode active", elem_id="speed_status")
with gr.Row():
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3", "4:1", "3:1", "2:1"],
value="16:9"
)
with gr.Row():
quality_multiplier = gr.Radio(
label="Quality (Size Multiplier)",
choices=["0.5x", "1x", "1.5x"],
value="1x"
)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(
label="Guidance Scale (True CFG)",
minimum=1.0,
maximum=5.0,
step=0.1,
value=3.5,
info="Lower for speed mode, higher for quality"
)
steps = gr.Slider(
label="Steps",
minimum=4,
maximum=50,
step=1,
value=45,
info="Automatically set by speed mode"
)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0)
# Event handlers
gallery.select(
update_selection,
inputs=[aspect_ratio],
outputs=[prompt, selected_info, selected_index, aspect_ratio, generate_button]
)
speed_mode.change(
handle_speed_mode,
inputs=[speed_mode],
outputs=[speed_status, steps, cfg_scale]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt, generate_button]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora, generate_button]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, quality_multiplier, quantity],
outputs=[result, seed]
)
app.load(
fn=handle_speed_mode,
inputs=[gr.State("light 4")],
outputs=[speed_status, steps, cfg_scale]
)
app.queue()
app.launch()