Spaces:
Runtime error
Runtime error
mend
Browse files
ETL/embeddings_base.ipynb
CHANGED
|
@@ -36,9 +36,21 @@
|
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"cell_type": "code",
|
| 39 |
-
"execution_count":
|
| 40 |
"metadata": {},
|
| 41 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"source": [
|
| 43 |
"preprocessor = PreProcessor(\n",
|
| 44 |
" clean_empty_lines=True,\n",
|
|
@@ -107,6 +119,273 @@
|
|
| 107 |
"\n",
|
| 108 |
"document_store.update_embeddings(retriever, batch_size=10000)"
|
| 109 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
}
|
| 111 |
],
|
| 112 |
"metadata": {
|
|
@@ -116,7 +395,15 @@
|
|
| 116 |
"name": "python3"
|
| 117 |
},
|
| 118 |
"language_info": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
"name": "python",
|
|
|
|
|
|
|
| 120 |
"version": "3.10.12"
|
| 121 |
}
|
| 122 |
},
|
|
|
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"cell_type": "code",
|
| 39 |
+
"execution_count": 1,
|
| 40 |
"metadata": {},
|
| 41 |
+
"outputs": [
|
| 42 |
+
{
|
| 43 |
+
"ename": "NameError",
|
| 44 |
+
"evalue": "name 'PreProcessor' is not defined",
|
| 45 |
+
"output_type": "error",
|
| 46 |
+
"traceback": [
|
| 47 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 48 |
+
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
| 49 |
+
"\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 5\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m preprocessor \u001b[39m=\u001b[39m PreProcessor(\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m clean_empty_lines\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m clean_whitespace\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m clean_header_footer\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m split_by\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39msentence\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m split_length\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m split_overlap\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m split_respect_sentence_boundary\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m all_docs \u001b[39m=\u001b[39m convert_files_to_docs(dir_path\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m./Fontes/Wiki_Pages/\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m docs_default \u001b[39m=\u001b[39m preprocessor\u001b[39m.\u001b[39mprocess(all_docs)\n",
|
| 50 |
+
"\u001b[0;31mNameError\u001b[0m: name 'PreProcessor' is not defined"
|
| 51 |
+
]
|
| 52 |
+
}
|
| 53 |
+
],
|
| 54 |
"source": [
|
| 55 |
"preprocessor = PreProcessor(\n",
|
| 56 |
" clean_empty_lines=True,\n",
|
|
|
|
| 119 |
"\n",
|
| 120 |
"document_store.update_embeddings(retriever, batch_size=10000)"
|
| 121 |
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": []
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": 10,
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"outputs": [
|
| 135 |
+
{
|
| 136 |
+
"name": "stderr",
|
| 137 |
+
"output_type": "stream",
|
| 138 |
+
"text": [
|
| 139 |
+
"[nltk_data] Downloading package punkt to /home/luid/nltk_data...\n",
|
| 140 |
+
"[nltk_data] Package punkt is already up-to-date!\n",
|
| 141 |
+
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
|
| 142 |
+
"[nltk_data] /home/luid/nltk_data...\n",
|
| 143 |
+
"[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.\n"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"ename": "NotImplementedError",
|
| 148 |
+
"evalue": "Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')",
|
| 149 |
+
"output_type": "error",
|
| 150 |
+
"traceback": [
|
| 151 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 152 |
+
"\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)",
|
| 153 |
+
"\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 12\u001b[0m line \u001b[0;36m1\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m palavras \u001b[39m=\u001b[39m word_tokenize(sentenca, language\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mportuguese\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m \u001b[39m# POS-tagging das palavras\u001b[39;00m\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m pos_tags \u001b[39m=\u001b[39m pos_tag(palavras, lang\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mpor\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=15'>16</a>\u001b[0m \u001b[39m# Exibindo os resultados\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=16'>17</a>\u001b[0m \u001b[39mprint\u001b[39m(pos_tags)\n",
|
| 154 |
+
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:166\u001b[0m, in \u001b[0;36mpos_tag\u001b[0;34m(tokens, tagset, lang)\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 142\u001b[0m \u001b[39mUse NLTK's currently recommended part of speech tagger to\u001b[39;00m\n\u001b[1;32m 143\u001b[0m \u001b[39mtag the given list of tokens.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[39m:rtype: list(tuple(str, str))\u001b[39;00m\n\u001b[1;32m 164\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 165\u001b[0m tagger \u001b[39m=\u001b[39m _get_tagger(lang)\n\u001b[0;32m--> 166\u001b[0m \u001b[39mreturn\u001b[39;00m _pos_tag(tokens, tagset, tagger, lang)\n",
|
| 155 |
+
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:114\u001b[0m, in \u001b[0;36m_pos_tag\u001b[0;34m(tokens, tagset, tagger, lang)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_pos_tag\u001b[39m(tokens, tagset\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, tagger\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, lang\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[1;32m 112\u001b[0m \u001b[39m# Currently only supports English and Russian.\u001b[39;00m\n\u001b[1;32m 113\u001b[0m \u001b[39mif\u001b[39;00m lang \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39meng\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m--> 114\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mNotImplementedError\u001b[39;00m(\n\u001b[1;32m 115\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCurrently, NLTK pos_tag only supports English and Russian \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 116\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m(i.e. lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39meng\u001b[39m\u001b[39m'\u001b[39m\u001b[39m or lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m'\u001b[39m\u001b[39m)\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[1;32m 118\u001b[0m \u001b[39m# Throws Error if tokens is of string type\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(tokens, \u001b[39mstr\u001b[39m):\n",
|
| 156 |
+
"\u001b[0;31mNotImplementedError\u001b[0m: Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')"
|
| 157 |
+
]
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"source": [
|
| 161 |
+
"import nltk\n",
|
| 162 |
+
"from nltk.tokenize import word_tokenize\n",
|
| 163 |
+
"from nltk import pos_tag\n",
|
| 164 |
+
"nltk.download('punkt')\n",
|
| 165 |
+
"nltk.download('averaged_perceptron_tagger')\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"# Sentença de exemplo\n",
|
| 168 |
+
"sentenca = \"O gato está no telhado.\"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"# Tokenização da sentença em palavras\n",
|
| 171 |
+
"palavras = word_tokenize(sentenca, language='portuguese')\n",
|
| 172 |
+
"\n",
|
| 173 |
+
"# POS-tagging das palavras\n",
|
| 174 |
+
"pos_tags = pos_tag(palavras, lang='por')\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"# Exibindo os resultados\n",
|
| 177 |
+
"print(pos_tags)"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": 3,
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"sentence = \"Eu gosto de programar em Python.\"\n",
|
| 187 |
+
"inputs = tokenizer(sentence, return_tensors=\"pt\")\n",
|
| 188 |
+
"outputs = model(**inputs)"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "code",
|
| 193 |
+
"execution_count": 8,
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
|
| 198 |
+
"verb_indices = [(i,label) for i, label in enumerate(predicted_labels[0])]"
|
| 199 |
+
]
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"cell_type": "code",
|
| 203 |
+
"execution_count": 9,
|
| 204 |
+
"metadata": {},
|
| 205 |
+
"outputs": [
|
| 206 |
+
{
|
| 207 |
+
"data": {
|
| 208 |
+
"text/plain": [
|
| 209 |
+
"[(0, tensor(1)),\n",
|
| 210 |
+
" (1, tensor(1)),\n",
|
| 211 |
+
" (2, tensor(1)),\n",
|
| 212 |
+
" (3, tensor(1)),\n",
|
| 213 |
+
" (4, tensor(0)),\n",
|
| 214 |
+
" (5, tensor(0)),\n",
|
| 215 |
+
" (6, tensor(1)),\n",
|
| 216 |
+
" (7, tensor(1)),\n",
|
| 217 |
+
" (8, tensor(0)),\n",
|
| 218 |
+
" (9, tensor(1)),\n",
|
| 219 |
+
" (10, tensor(1))]"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
"execution_count": 9,
|
| 223 |
+
"metadata": {},
|
| 224 |
+
"output_type": "execute_result"
|
| 225 |
+
}
|
| 226 |
+
],
|
| 227 |
+
"source": [
|
| 228 |
+
"verb_indices"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": 7,
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [
|
| 236 |
+
{
|
| 237 |
+
"name": "stdout",
|
| 238 |
+
"output_type": "stream",
|
| 239 |
+
"text": [
|
| 240 |
+
"Verbos na sentença: ['gosto', 'de', '##r', 'em', '##thon']\n"
|
| 241 |
+
]
|
| 242 |
+
}
|
| 243 |
+
],
|
| 244 |
+
"source": [
|
| 245 |
+
"predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
|
| 246 |
+
"verb_indices = [i for i, label in enumerate(predicted_labels[0]) if label == 1]\n",
|
| 247 |
+
"\n",
|
| 248 |
+
"verbs = [tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][i].item()) for i in verb_indices]\n",
|
| 249 |
+
"print(\"Verbos na sentença:\", verbs)"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "code",
|
| 254 |
+
"execution_count": 11,
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"outputs": [
|
| 257 |
+
{
|
| 258 |
+
"name": "stderr",
|
| 259 |
+
"output_type": "stream",
|
| 260 |
+
"text": [
|
| 261 |
+
"2023-11-28 18:26:39.155987: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
|
| 262 |
+
"2023-11-28 18:26:39.300399: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
|
| 263 |
+
"2023-11-28 18:26:39.300771: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n"
|
| 264 |
+
]
|
| 265 |
+
}
|
| 266 |
+
],
|
| 267 |
+
"source": [
|
| 268 |
+
"import spacy\n",
|
| 269 |
+
"from spacy.lang.pt.examples import sentences "
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": 12,
|
| 275 |
+
"metadata": {},
|
| 276 |
+
"outputs": [
|
| 277 |
+
{
|
| 278 |
+
"name": "stdout",
|
| 279 |
+
"output_type": "stream",
|
| 280 |
+
"text": [
|
| 281 |
+
"Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares \n",
|
| 282 |
+
"\n",
|
| 283 |
+
"Carros autônomos empurram a responsabilidade do seguro para os fabricantes.São Francisco considera banir os robôs de entrega que andam pelas calçadas \n",
|
| 284 |
+
"\n",
|
| 285 |
+
"Londres é a maior cidade do Reino Unido \n",
|
| 286 |
+
"\n"
|
| 287 |
+
]
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"source": [
|
| 291 |
+
"\n",
|
| 292 |
+
"# Alguns exemplos fornecidos pela própria biblioteca\n",
|
| 293 |
+
"for s in sentences:\n",
|
| 294 |
+
" print(s, '\\n')\n",
|
| 295 |
+
"\n"
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "code",
|
| 300 |
+
"execution_count": 29,
|
| 301 |
+
"metadata": {},
|
| 302 |
+
"outputs": [
|
| 303 |
+
{
|
| 304 |
+
"name": "stdout",
|
| 305 |
+
"output_type": "stream",
|
| 306 |
+
"text": [
|
| 307 |
+
"Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares\n"
|
| 308 |
+
]
|
| 309 |
+
}
|
| 310 |
+
],
|
| 311 |
+
"source": [
|
| 312 |
+
"# Criando o objeto spacy\n",
|
| 313 |
+
"nlp = spacy.load(\"pt_core_news_lg\")\n",
|
| 314 |
+
"doc = nlp(sentences[0])\n",
|
| 315 |
+
"print(doc.text)\n"
|
| 316 |
+
]
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"cell_type": "code",
|
| 320 |
+
"execution_count": 34,
|
| 321 |
+
"metadata": {},
|
| 322 |
+
"outputs": [],
|
| 323 |
+
"source": [
|
| 324 |
+
"doc = nlp(\"A amazonia azul e a defesa maritma\")"
|
| 325 |
+
]
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"cell_type": "code",
|
| 329 |
+
"execution_count": 36,
|
| 330 |
+
"metadata": {},
|
| 331 |
+
"outputs": [],
|
| 332 |
+
"source": [
|
| 333 |
+
"for token in doc:\n",
|
| 334 |
+
" verb_count = 0\n",
|
| 335 |
+
" if token.pos_ == 'VERB':\n",
|
| 336 |
+
" verb_count +=1"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": 37,
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"outputs": [
|
| 344 |
+
{
|
| 345 |
+
"data": {
|
| 346 |
+
"text/plain": [
|
| 347 |
+
"0"
|
| 348 |
+
]
|
| 349 |
+
},
|
| 350 |
+
"execution_count": 37,
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"output_type": "execute_result"
|
| 353 |
+
}
|
| 354 |
+
],
|
| 355 |
+
"source": [
|
| 356 |
+
"verb_count"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": 35,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"outputs": [
|
| 364 |
+
{
|
| 365 |
+
"name": "stdout",
|
| 366 |
+
"output_type": "stream",
|
| 367 |
+
"text": [
|
| 368 |
+
"A DET\n",
|
| 369 |
+
"amazonia NOUN\n",
|
| 370 |
+
"azul ADJ\n",
|
| 371 |
+
"e CCONJ\n",
|
| 372 |
+
"a DET\n",
|
| 373 |
+
"defesa NOUN\n",
|
| 374 |
+
"maritma NOUN\n"
|
| 375 |
+
]
|
| 376 |
+
}
|
| 377 |
+
],
|
| 378 |
+
"source": [
|
| 379 |
+
"for token in doc:\n",
|
| 380 |
+
" print(token.text, token.pos_)\n"
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"cell_type": "code",
|
| 385 |
+
"execution_count": null,
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"outputs": [],
|
| 388 |
+
"source": []
|
| 389 |
}
|
| 390 |
],
|
| 391 |
"metadata": {
|
|
|
|
| 395 |
"name": "python3"
|
| 396 |
},
|
| 397 |
"language_info": {
|
| 398 |
+
"codemirror_mode": {
|
| 399 |
+
"name": "ipython",
|
| 400 |
+
"version": 3
|
| 401 |
+
},
|
| 402 |
+
"file_extension": ".py",
|
| 403 |
+
"mimetype": "text/x-python",
|
| 404 |
"name": "python",
|
| 405 |
+
"nbconvert_exporter": "python",
|
| 406 |
+
"pygments_lexer": "ipython3",
|
| 407 |
"version": "3.10.12"
|
| 408 |
}
|
| 409 |
},
|
app.py
CHANGED
|
@@ -168,7 +168,7 @@ def start_haystack():
|
|
| 168 |
"""
|
| 169 |
load document store, retriever, entailment checker and create pipeline
|
| 170 |
"""
|
| 171 |
-
shutil.copy("./data/
|
| 172 |
document_store = FAISSDocumentStore(
|
| 173 |
faiss_index_path=f"./data/my_faiss_index.faiss",
|
| 174 |
faiss_config_path=f"./data/my_faiss_index.json",
|
|
@@ -234,7 +234,7 @@ def highlight_cols(s):
|
|
| 234 |
|
| 235 |
def main():
|
| 236 |
# Persistent state
|
| 237 |
-
set_state_if_absent("statement", "")
|
| 238 |
set_state_if_absent("answer", "")
|
| 239 |
set_state_if_absent("results", None)
|
| 240 |
set_state_if_absent("raw_json", None)
|
|
|
|
| 168 |
"""
|
| 169 |
load document store, retriever, entailment checker and create pipeline
|
| 170 |
"""
|
| 171 |
+
shutil.copy("./data/final_faiss_document_store.db", ".")
|
| 172 |
document_store = FAISSDocumentStore(
|
| 173 |
faiss_index_path=f"./data/my_faiss_index.faiss",
|
| 174 |
faiss_config_path=f"./data/my_faiss_index.json",
|
|
|
|
| 234 |
|
| 235 |
def main():
|
| 236 |
# Persistent state
|
| 237 |
+
# set_state_if_absent("statement", "")
|
| 238 |
set_state_if_absent("answer", "")
|
| 239 |
set_state_if_absent("results", None)
|
| 240 |
set_state_if_absent("raw_json", None)
|
data/{pdf_faiss_document_store.db → final_faiss_document_store.db}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:97bf03de139766204e23d3cef6b5f0aef9d3379d85956beb2dfb82dcdba0191a
|
| 3 |
+
size 272740352
|
data/my_faiss_index.faiss
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:204053b0084e69a64a8be6fcd0f331c35c330e0a2771652a9a08a04d2e7cc460
|
| 3 |
+
size 461922349
|
data/my_faiss_index.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"similarity": "cosine", "embedding_dim": 512, "sql_url": "sqlite:///
|
|
|
|
| 1 |
+
{"similarity": "cosine", "embedding_dim": 512, "sql_url": "sqlite:///final_faiss_document_store.db"}
|