Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from unsloth import FastLanguageModel
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import TextStreamer
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# --- Configuration ---
|
| 10 |
+
# 1. Base Model Name (must match the one used for training)
|
| 11 |
+
BASE_MODEL_NAME = "unsloth/gemma-3n-E4B-it"
|
| 12 |
+
|
| 13 |
+
# 2. Your PEFT (LoRA) Model Name on Hugging Face Hub
|
| 14 |
+
# Replace 'your-username' and 'your-model-repo-name' with your actual details
|
| 15 |
+
PEFT_MODEL_NAME = "lyimo/mosquito-breeding-detection" # Or your Hugging Face repo path
|
| 16 |
+
|
| 17 |
+
# 3. Max sequence length (should match or exceed training setting)
|
| 18 |
+
MAX_SEQ_LENGTH = 2048
|
| 19 |
+
|
| 20 |
+
# --- Load Model and Tokenizer ---
|
| 21 |
+
print("Loading base model...")
|
| 22 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 23 |
+
model_name=BASE_MODEL_NAME,
|
| 24 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
| 25 |
+
dtype=None, # Auto-detect
|
| 26 |
+
load_in_4bit=True, # Match training setting
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
print("Loading LoRA adapters...")
|
| 30 |
+
model = FastLanguageModel.get_peft_model(model, peft_model_name=PEFT_MODEL_NAME)
|
| 31 |
+
|
| 32 |
+
print("Setting up chat template...")
|
| 33 |
+
from unsloth.chat_templates import get_chat_template
|
| 34 |
+
tokenizer = get_chat_template(tokenizer, chat_template="gemma-3")
|
| 35 |
+
|
| 36 |
+
print("Model and tokenizer loaded successfully!")
|
| 37 |
+
|
| 38 |
+
# --- Inference Function ---
|
| 39 |
+
def analyze_image(image, prompt):
|
| 40 |
+
"""
|
| 41 |
+
Analyzes the image using the fine-tuned model.
|
| 42 |
+
"""
|
| 43 |
+
if image is None:
|
| 44 |
+
return "Please upload an image."
|
| 45 |
+
|
| 46 |
+
# Save the uploaded image temporarily (or pass the PIL object, see notes)
|
| 47 |
+
# Unsloth's tokenizer often expects the image path during apply_chat_template
|
| 48 |
+
# for multimodal inputs.
|
| 49 |
+
temp_image_path = "temp_uploaded_image.jpg"
|
| 50 |
+
try:
|
| 51 |
+
image.save(temp_image_path) # Save PIL image from Gradio
|
| 52 |
+
|
| 53 |
+
# Construct messages
|
| 54 |
+
messages = [
|
| 55 |
+
{
|
| 56 |
+
"role": "user",
|
| 57 |
+
"content": [
|
| 58 |
+
{"type": "image", "image": temp_image_path}, # Pass the temporary path
|
| 59 |
+
{"type": "text", "text": prompt}
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
# Apply chat template
|
| 65 |
+
full_prompt = tokenizer.apply_chat_template(
|
| 66 |
+
messages,
|
| 67 |
+
tokenize=False,
|
| 68 |
+
add_generation_prompt=True
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Tokenize inputs
|
| 72 |
+
inputs = tokenizer(
|
| 73 |
+
full_prompt,
|
| 74 |
+
return_tensors="pt",
|
| 75 |
+
).to(model.device)
|
| 76 |
+
|
| 77 |
+
# --- Generation ---
|
| 78 |
+
# Collect the output text
|
| 79 |
+
output_text = ""
|
| 80 |
+
def text_collector(text):
|
| 81 |
+
nonlocal output_text
|
| 82 |
+
output_text += text
|
| 83 |
+
|
| 84 |
+
# Create a custom streamer to capture text
|
| 85 |
+
class GradioTextStreamer:
|
| 86 |
+
def __init__(self, tokenizer, callback=None):
|
| 87 |
+
self.tokenizer = tokenizer
|
| 88 |
+
self.callback = callback
|
| 89 |
+
self.token_cache = []
|
| 90 |
+
self.print_len = 0
|
| 91 |
+
|
| 92 |
+
def put(self, value):
|
| 93 |
+
if self.callback:
|
| 94 |
+
# Decode the current token(s)
|
| 95 |
+
self.token_cache.extend(value.tolist())
|
| 96 |
+
text = self.tokenizer.decode(self.token_cache, skip_special_tokens=True)
|
| 97 |
+
# Call the callback with the new text
|
| 98 |
+
self.callback(text[len(output_text):]) # Send only the new part
|
| 99 |
+
# Update output_text locally to track progress
|
| 100 |
+
nonlocal output_text
|
| 101 |
+
output_text = text
|
| 102 |
+
|
| 103 |
+
def end(self):
|
| 104 |
+
if self.callback:
|
| 105 |
+
# Ensure any remaining text is sent
|
| 106 |
+
self.callback("") # Signal end, or send final text if needed differently
|
| 107 |
+
self.token_cache = []
|
| 108 |
+
self.print_len = 0
|
| 109 |
+
|
| 110 |
+
streamer = GradioTextStreamer(tokenizer, callback=text_collector)
|
| 111 |
+
|
| 112 |
+
# Start generation in a separate thread to allow streaming
|
| 113 |
+
import threading
|
| 114 |
+
def generate_text():
|
| 115 |
+
_ = model.generate(
|
| 116 |
+
**inputs,
|
| 117 |
+
max_new_tokens=1024,
|
| 118 |
+
streamer=streamer,
|
| 119 |
+
# You can add other generation parameters here
|
| 120 |
+
# temperature=0.7,
|
| 121 |
+
# top_p=0.95,
|
| 122 |
+
# do_sample=True
|
| 123 |
+
)
|
| 124 |
+
# Signal completion after generation finishes
|
| 125 |
+
yield output_text # Final yield to ensure completeness
|
| 126 |
+
|
| 127 |
+
# Yield initial output and then stream updates
|
| 128 |
+
yield output_text # Initial empty or partial output
|
| 129 |
+
for _ in generate_text(): # This loop runs the generation
|
| 130 |
+
yield output_text # Yield updated text as it's generated
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
error_msg = f"An error occurred during processing: {str(e)}"
|
| 134 |
+
print(error_msg)
|
| 135 |
+
yield error_msg
|
| 136 |
+
finally:
|
| 137 |
+
# Clean up the temporary image file
|
| 138 |
+
if os.path.exists(temp_image_path):
|
| 139 |
+
os.remove(temp_image_path)
|
| 140 |
+
|
| 141 |
+
# --- Gradio Interface ---
|
| 142 |
+
with gr.Blocks() as demo:
|
| 143 |
+
gr.Markdown("# 🦟 Mosquito Breeding Site Detector")
|
| 144 |
+
gr.Markdown("Upload an image and ask the AI to analyze it for potential mosquito breeding sites.")
|
| 145 |
+
with gr.Row():
|
| 146 |
+
with gr.Column():
|
| 147 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 148 |
+
prompt_input = gr.Textbox(
|
| 149 |
+
label="Your Question",
|
| 150 |
+
value="Can you analyze this image for mosquito breeding sites and recommend what to do?",
|
| 151 |
+
lines=2
|
| 152 |
+
)
|
| 153 |
+
submit_btn = gr.Button("Analyze")
|
| 154 |
+
with gr.Column():
|
| 155 |
+
output_text = gr.Textbox(label="Analysis Result", interactive=False, lines=15)
|
| 156 |
+
|
| 157 |
+
# Connect the button to the function
|
| 158 |
+
submit_btn.click(
|
| 159 |
+
fn=analyze_image,
|
| 160 |
+
inputs=[image_input, prompt_input],
|
| 161 |
+
outputs=output_text, # Stream to the textbox
|
| 162 |
+
streaming=True # Enable streaming output
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# Launch the app
|
| 166 |
+
if __name__ == "__main__":
|
| 167 |
+
demo.launch()
|