# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Universal Deep Research Backend (UDR-B) - FastAPI Application This module provides the main FastAPI application for the Universal Deep Research Backend, offering intelligent research and reporting capabilities through streaming APIs. """ import asyncio import json import os import random from datetime import datetime from typing import Any, AsyncGenerator, Dict, Optional import uvicorn from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse from pydantic import BaseModel from uvicorn.config import LOGGING_CONFIG import items # Import configuration from config import get_config from frame.clients import Client, HuggingFaceClient, OpenAIClient from frame.harness4 import FrameConfigV4, FrameV4 from frame.trace import Trace from scan_research import do_reporting as real_reporting from scan_research import do_research as real_research from scan_research import generate_session_key from scan_research_dry import do_reporting as dry_reporting from scan_research_dry import do_research as dry_research # Get configuration config = get_config() app = FastAPI( title="Universal Deep Research Backend API", description="Intelligent research and reporting service using LLMs and web search", version="1.0.0", ) # Configure logging LOGGING_CONFIG["formatters"]["default"][ "fmt" ] = "%(asctime)s [%(name)s] %(levelprefix)s %(message)s" # Configure CORS app.add_middleware( CORSMiddleware, allow_origins=[config.cors.frontend_url], # Frontend URL from config allow_credentials=config.cors.allow_credentials, allow_methods=config.cors.allow_methods, allow_headers=config.cors.allow_headers, ) class Message(BaseModel): text: str class ResearchRequest(BaseModel): dry: bool = False session_key: Optional[str] = None start_from: str = "research" strategy_id: Optional[str] = None strategy_content: Optional[str] = None prompt: Optional[str] = None mock_directory: str = "mock_instances/stocks_24th_3_sections" @app.get("/") async def root(): return { "message": "The Deep Research Backend is running. Use the /api/research endpoint to start a new research session." } def build_events_path(session_key: str) -> str: return f"instances/{session_key}.events.jsonl" def make_message( event: Dict[str, Any], session_key: str | None = None, timestamp_the_event: bool = True, ) -> str: if timestamp_the_event: event = {**event, "timestamp": datetime.now().isoformat()} if session_key: items.register_item(build_events_path(session_key), event) return json.dumps({"event": event, "session_key": session_key}) + "\n" @app.post("/api/research") async def start_research(request: ResearchRequest): """ Start or continue a research process and stream the results using JSON streaming. This endpoint initiates a comprehensive research workflow that includes: - Query analysis and topic extraction - Web search using Tavily API - Content filtering and relevance scoring - Report generation using LLMs The response is streamed as Server-Sent Events (SSE) with real-time progress updates. Args: request (ResearchRequest): The research request containing: - dry (bool): Use mock data for testing (default: False) - session_key (str, optional): Existing session to continue - start_from (str): "research" or "reporting" phase - prompt (str): Research query (required for research phase) - mock_directory (str): Directory for mock data Returns: StreamingResponse: Server-Sent Events stream with research progress Raises: HTTPException: 400 if request parameters are invalid Example: ```bash curl -X POST http://localhost:8000/api/research \\ -H "Content-Type: application/json" \\ -d '{ "prompt": "What are the latest developments in quantum computing?", "start_from": "research" }' ``` """ # Validate request parameters if request.start_from not in ["research", "reporting"]: raise HTTPException( status_code=400, detail="start_from must be either 'research' or 'reporting'", ) if request.start_from == "reporting" and not request.session_key: raise HTTPException( status_code=400, detail="session_key is required when starting from reporting phase", ) if request.start_from == "research" and not request.prompt: raise HTTPException( status_code=400, detail="prompt is required when starting from research phase", ) # Use configured mock directory mock_dir = request.mock_directory or config.research.mock_directory # Choose implementation research_impl = ( (lambda session_key, prompt: dry_research(session_key, prompt, mock_dir)) if request.dry else real_research ) reporting_impl = ( (lambda session_key: dry_reporting(session_key, mock_dir)) if request.dry else real_reporting ) # Generate or use provided session key session_key = request.session_key or generate_session_key() # Prepare generators research_gen = ( research_impl(session_key, request.prompt) if request.start_from == "research" else None ) reporting_gen = reporting_impl(session_key) return StreamingResponse( stream_research_events( research_gen, reporting_gen, request.start_from == "research", session_key ), media_type="application/x-ndjson", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Encoding": "none", }, ) async def stream_research_events( research_fn: AsyncGenerator[Dict[str, Any], None], reporting_fn: AsyncGenerator[Dict[str, Any], None], do_research: bool, session_key: str, ) -> AsyncGenerator[str, None]: """ Stream research or reporting events using JSON streaming format. Args: research_fn: Research phase generator reporting_fn: Reporting phase generator do_research: Whether to run research phase session_key: Session identifier Yields: JSON formatted event strings, one per line """ try: yield make_message( { "type": "started", "description": "Waking up the Deep Research Backend", }, session_key, ) error_event_encountered: bool = False if do_research: async for event in research_fn: if event["type"] == "error": error_event_encountered = True yield make_message(event, session_key) if not error_event_encountered: async for event in reporting_fn: yield make_message(event, session_key) # Send completion message yield make_message( { "type": "completed", "description": "Research and reporting completed", }, session_key, ) except asyncio.CancelledError: # Send cancellation message before propagating the exception yield make_message( { "type": "cancelled", "description": "Research was cancelled", }, session_key, ) raise @app.post("/api/research2") async def start_research2(request: ResearchRequest): # Validate request parameters if request.start_from not in ["research"]: raise HTTPException(status_code=400, detail="start_from must be 'research'") if request.start_from == "research" and not request.prompt: raise HTTPException( status_code=400, detail="prompt is required when starting from research phase", ) # Generate or use provided session key session_key = generate_session_key() if request.strategy_id is None or request.strategy_id == "default": # Validate request parameters if request.start_from not in ["research", "reporting"]: raise HTTPException( status_code=400, detail="start_from must be either 'research' or 'reporting'", ) if request.start_from == "reporting" and not request.session_key: raise HTTPException( status_code=400, detail="session_key is required when starting from reporting phase", ) if request.start_from == "research" and not request.prompt: raise HTTPException( status_code=400, detail="prompt is required when starting from research phase", ) # Choose implementation research_impl = ( ( lambda session_key, prompt: dry_research( session_key, prompt, "mock_instances/stocks_24th_3_sections" ) ) if request.dry else real_research ) reporting_impl = ( ( lambda session_key: dry_reporting( session_key, "mock_instances/stocks_24th_3_sections" ) ) if request.dry else real_reporting ) # Generate or use provided session key session_key = request.session_key or generate_session_key() # Prepare generators research_gen = ( research_impl(session_key, request.prompt) if request.start_from == "research" else None ) reporting_gen = reporting_impl(session_key) return StreamingResponse( stream_research_events( research_gen, reporting_gen, request.start_from == "research", session_key, ), media_type="application/x-ndjson", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Encoding": "none", }, ) return StreamingResponse( stream_research2_events( session_key, request.prompt, request.strategy_id, request.strategy_content ), media_type="application/x-ndjson", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Encoding": "none", }, ) async def stream_research2_events( session_key: str, prompt: str, strategy_id: str, strategy_content: str ) -> AsyncGenerator[str, None]: try: yield make_message( { "type": "started", "description": "Waking up the Universal Deep Research Backend", }, session_key, ) # Set the random seed from configuration random.seed(config.research.random_seed) # Set trace filename using configuration comm_trace_timestamp: str = datetime.now().strftime("%Y%m%d_%H-%M-%S") comm_trace_filename = ( f"{config.logging.log_dir}/comms_{comm_trace_timestamp}.log" ) comm_trace = Trace( comm_trace_filename, copy_into_stdout=config.logging.copy_into_stdout ) client: Client = OpenAIClient( base_url="https://integrate.api.nvidia.com/v1", model="nvdev/meta/llama-3.1-70b-instruct", trace=comm_trace, ) frame_config = FrameConfigV4( long_context_cutoff=config.frame.long_context_cutoff, force_long_context=config.frame.force_long_context, max_iterations=config.frame.max_iterations, interaction_level=config.frame.interaction_level, ) harness = FrameV4( client_profile=client, errand_profile={}, compilation_trace=True, execution_trace="file_and_stdout", ) messages = [] preamble_files = [ "frame/prompts/udr_minimal_generating/0.code_skill.py", ] for path in preamble_files: type = path.split(".")[-2] with open(path, "r") as f: messages.append( { "mid": len(messages), "role": "user", "content": f.read(), "type": type, } ) messages.append( { "mid": len(messages), "role": "user", "content": "The following is the prompt data to be used in later procedures.\n\nPROMPT:\n" + prompt, "type": "data", } ) messages.append( { "mid": len(messages), "role": "user", "content": strategy_content, "type": "generating_routine", } ) for i in range(len(messages)): messages_so_far = messages[: i + 1] yield make_message( { "type": "generic", "description": "Processing agentic instructions: " + str(i + 1) + " of " + str(len(messages)), }, session_key, ) for notification in harness.generate_with_notifications( messages=messages_so_far, frame_config=frame_config, ): yield make_message(notification, session_key) yield make_message( { "type": "completed", "description": "Research completed", }, session_key, ) except asyncio.CancelledError: # Send cancellation message before propagating the exception yield make_message( { "type": "cancelled", "description": "Research was cancelled", }, session_key, ) raise