Spaces:
Running
Running
Akshay Agrawal
commited on
Commit
·
89f83d9
1
Parent(s):
5a78583
minimum fuel optimal control
Browse files
optimization/03_minimum_fuel_optimal_control.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import marimo
|
| 2 |
+
|
| 3 |
+
__generated_with = "0.11.0"
|
| 4 |
+
app = marimo.App()
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@app.cell
|
| 8 |
+
def _():
|
| 9 |
+
import marimo as mo
|
| 10 |
+
return (mo,)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@app.cell(hide_code=True)
|
| 14 |
+
def _(mo):
|
| 15 |
+
mo.md(
|
| 16 |
+
r"""
|
| 17 |
+
# Minimal fuel optimal control
|
| 18 |
+
|
| 19 |
+
This notebook includes an application of linear programming to controlling a
|
| 20 |
+
physical system, adapted from [Convex
|
| 21 |
+
Optimization](https://web.stanford.edu/~boyd/cvxbook/) by Boyd and Vandenberghe.
|
| 22 |
+
|
| 23 |
+
We consider a linear dynamical system with state $x(t) \in \mathbf{R}^n$, for $t = 0, \ldots, T$. At each time step $t = 0, \ldots, T - 1$, an actuator or input signal $u(t)$ is applied, affecting the state. The dynamics
|
| 24 |
+
of the system is given by the linear recurrence
|
| 25 |
+
|
| 26 |
+
\[
|
| 27 |
+
x(t + 1) = Ax(t) + bu(t), \quad t = 0, \ldots, T - 1,
|
| 28 |
+
\]
|
| 29 |
+
|
| 30 |
+
where $A \in \mathbf{R}^{n \times n}$ and $b \in \mathbf{R}^n$ are given and encode how the system evolves. The initial state $x(0)$ is also given.
|
| 31 |
+
|
| 32 |
+
The _minimum fuel optimal control problem_ is to choose the inputs $u(0), \ldots, u(T - 1)$ so as to achieve
|
| 33 |
+
a given desired state $x_\text{des} = x(T)$ while minimizing the total fuel consumed
|
| 34 |
+
|
| 35 |
+
\[
|
| 36 |
+
F = \sum_{t=0}^{T - 1} f(u(t)).
|
| 37 |
+
\]
|
| 38 |
+
|
| 39 |
+
The function $f : \mathbf{R} \to \mathbf{R}$ tells us how much fuel is consumed as a function of the input, and is given by
|
| 40 |
+
|
| 41 |
+
\[
|
| 42 |
+
f(a) = \begin{cases}
|
| 43 |
+
|a| & |a| \leq 1 \\
|
| 44 |
+
2|a| - 1 & |a| > 1.
|
| 45 |
+
\end{cases}
|
| 46 |
+
\]
|
| 47 |
+
|
| 48 |
+
This means the fuel use is proportional to the magnitude of the signal between $-1$ and $1$, but for larger signals the marginal fuel efficiency is half.
|
| 49 |
+
|
| 50 |
+
**This notebook.** In this notebook we use CVXPY to formulate the minimum fuel optimal control problem as a linear program. The notebook lets you play with the initial and target states, letting you see how they affect the planned trajectory of inputs $u$.
|
| 51 |
+
|
| 52 |
+
First, we create the **problem data**.
|
| 53 |
+
"""
|
| 54 |
+
)
|
| 55 |
+
return
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.cell
|
| 59 |
+
def _():
|
| 60 |
+
import numpy as np
|
| 61 |
+
return (np,)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@app.cell
|
| 65 |
+
def _():
|
| 66 |
+
n, T = 3, 30
|
| 67 |
+
return T, n
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@app.cell
|
| 71 |
+
def _(np):
|
| 72 |
+
A = np.array([[-1, 0.4, 0.8], [1, 0, 0], [0, 1, 0]])
|
| 73 |
+
b = np.array([[1, 0, 0.3]]).T
|
| 74 |
+
return A, b
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@app.cell(hide_code=True)
|
| 78 |
+
def _(mo, n, np):
|
| 79 |
+
import wigglystuff
|
| 80 |
+
|
| 81 |
+
x0_widget = mo.ui.anywidget(wigglystuff.Matrix(np.zeros((1, n))))
|
| 82 |
+
xdes_widget = mo.ui.anywidget(wigglystuff.Matrix(np.array([[7, 2, -6]])))
|
| 83 |
+
|
| 84 |
+
_a = mo.md(
|
| 85 |
+
rf"""
|
| 86 |
+
|
| 87 |
+
Choose a value for $x_0$ ...
|
| 88 |
+
|
| 89 |
+
{x0_widget}
|
| 90 |
+
"""
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
_b = mo.md(
|
| 94 |
+
rf"""
|
| 95 |
+
... and for $x_\text{{des}}$
|
| 96 |
+
|
| 97 |
+
{xdes_widget}
|
| 98 |
+
"""
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
mo.hstack([_a, _b], justify="space-around")
|
| 102 |
+
return wigglystuff, x0_widget, xdes_widget
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@app.cell
|
| 106 |
+
def _(x0_widget, xdes_widget):
|
| 107 |
+
x0 = x0_widget.matrix
|
| 108 |
+
xdes = xdes_widget.matrix
|
| 109 |
+
return x0, xdes
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
@app.cell(hide_code=True)
|
| 113 |
+
def _(mo):
|
| 114 |
+
mo.md(r"""**Next, we specify the problem as a linear program using CVXPY.** This problem is linear because the objective and constraints are affine. (In fact, the objective is piecewise affine, but CVXPY rewrites it to be affine for you.)""")
|
| 115 |
+
return
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
@app.cell
|
| 119 |
+
def _():
|
| 120 |
+
import cvxpy as cp
|
| 121 |
+
return (cp,)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@app.cell
|
| 125 |
+
def _(A, T, b, cp, mo, n, x0, xdes):
|
| 126 |
+
X, u = cp.Variable(shape=(n, T + 1)), cp.Variable(shape=(1, T))
|
| 127 |
+
|
| 128 |
+
objective = cp.sum(cp.maximum(cp.abs(u), 2 * cp.abs(u) - 1))
|
| 129 |
+
constraints = [
|
| 130 |
+
X[:, 1:] == A @ X[:, :-1] + b @ u,
|
| 131 |
+
X[:, 0] == x0,
|
| 132 |
+
X[:, -1] == xdes,
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
fuel_used = cp.Problem(cp.Minimize(objective), constraints).solve()
|
| 136 |
+
mo.md(f"Achieved a fuel usage of {fuel_used:.02f}. 🚀")
|
| 137 |
+
return X, constraints, fuel_used, objective, u
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
@app.cell(hide_code=True)
|
| 141 |
+
def _(mo):
|
| 142 |
+
mo.md(
|
| 143 |
+
"""
|
| 144 |
+
Finally, we plot the chosen inputs over time.
|
| 145 |
+
|
| 146 |
+
**🌊 Try it!** Change the initial and desired states; how do fuel usage and controls change? Can you explain what you see? You can also try experimenting with the value of $T$.
|
| 147 |
+
"""
|
| 148 |
+
)
|
| 149 |
+
return
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
@app.cell
|
| 153 |
+
def _(plot_solution, u):
|
| 154 |
+
plot_solution(u)
|
| 155 |
+
return
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
@app.cell
|
| 159 |
+
def _(T, cp, np):
|
| 160 |
+
def plot_solution(u: cp.Variable):
|
| 161 |
+
import matplotlib.pyplot as plt
|
| 162 |
+
|
| 163 |
+
plt.step(np.arange(T), u.T.value)
|
| 164 |
+
plt.axis("tight")
|
| 165 |
+
plt.xlabel("$t$")
|
| 166 |
+
plt.ylabel("$u$")
|
| 167 |
+
return plt.gca()
|
| 168 |
+
return (plot_solution,)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
if __name__ == "__main__":
|
| 172 |
+
app.run()
|