Spaces:
Runtime error
Runtime error
File size: 38,894 Bytes
ca28016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
'use client';
import React, { useState } from 'react';
import { Card, CardContent, CardHeader, CardTitle } from '@/components/ui/card';
import { Button } from '@/components/ui/button';
import { Textarea } from '@/components/ui/textarea';
import { Badge } from '@/components/ui/badge';
import { Alert, AlertDescription } from '@/components/ui/alert';
import {
Brain,
Zap,
Code2,
PlayCircle,
CheckCircle,
AlertCircle,
Clock,
Cpu,
TrendingUp,
Download,
Database,
FileText,
Settings,
Circle
} from 'lucide-react';
import quantumWeaverAPI from '@/lib/api-client';
import { Dialog, DialogContent, DialogHeader, DialogTitle } from '@/components/ui/dialog';
import { Separator } from '@/components/ui/separator';
import { useRouter } from 'next/navigation';
import UnifiedQuestionnaire from './UnifiedQuestionnaire';
interface AnalysisResult {
task_type: string;
domain: string;
complexity: string;
estimated_time: string;
model_suggestions: string[];
data_requirements: string[];
}
interface DataPlan {
internet_datasets: Array<{
name: string;
description: string;
url: string;
download_size: string;
}>;
user_data_needed: boolean;
user_data_instructions: string;
pretrained_models: Array<{
name: string;
description: string;
}>;
preprocessing_steps: string[];
}
interface WorkflowResult {
status: string;
workflow_id: string;
analysis: AnalysisResult;
data_plan: DataPlan;
training_pipeline: any;
message: string;
// Optional fields returned by backend we rely on
jupyter_notebook?: {
content: string;
file_name?: string;
visualizations?: string[];
sections?: string[];
interactive?: string[];
} | null;
solution?: any;
}
export default function AIArchitectPanel() {
const router = useRouter();
const [userRequest, setUserRequest] = useState('');
const [isGenerating, setIsGenerating] = useState(false);
const [error, setError] = useState<string | null>(null);
const [workflowResult, setWorkflowResult] = useState<WorkflowResult | null>(null);
const [processingStep, setProcessingStep] = useState<string>('');
const [isNotebookOpen, setIsNotebookOpen] = useState(false);
const [trainingInfo, setTrainingInfo] = useState<{ status: 'idle'|'starting'|'started'|'error'; message?: string }>()
const [workflowId, setWorkflowId] = useState<string | null>(null);
const [workflowStatus, setWorkflowStatus] = useState<any | null>(null);
const [polling, setPolling] = useState<any | null>(null);
const [showQuestionnaire, setShowQuestionnaire] = useState(false);
const [isSubmittingQuestionnaire, setIsSubmittingQuestionnaire] = useState(false);
const [hasSubmittedQuestionnaire, setHasSubmittedQuestionnaire] = useState(false);
const [questionnaireData, setQuestionnaireData] = useState<any>(null);
const [questionnaireShownForWorkflow, setQuestionnaireShownForWorkflow] = useState<string | null>(null);
// Smart API base detection with fallbacks
const getApiBase = () => {
if (typeof window === 'undefined') return process.env.NEXT_PUBLIC_TRAINING_API_BASE || 'http://localhost:9006';
const envBase = process.env.NEXT_PUBLIC_TRAINING_API_BASE;
const fallbacks = [
envBase,
'http://localhost:9006',
'http://127.0.0.1:9006',
'http://0.0.0.0:9006',
(window.location && window.location.origin ? window.location.origin.replace(':9002', ':9006') : '')
].filter(Boolean);
return fallbacks[0] as string;
};
const API_BASE = getApiBase();
// Robust fetch that tries alternative backends with per-attempt timeout
const smartFetch = async (path: string, init?: RequestInit, perAttemptTimeoutMs: number = 60000): Promise<Response> => {
const candidates = [
API_BASE,
'http://127.0.0.1:9006',
'http://0.0.0.0:9006',
(typeof window !== 'undefined' && window.location ? window.location.origin.replace(':9002', ':9006') : '')
].filter(Boolean) as string[];
let lastErr: any = null;
for (const base of candidates) {
const controller = new AbortController();
const timer = setTimeout(() => controller.abort(), perAttemptTimeoutMs);
try {
const res = await fetch(`${base}${path}`, { ...(init || {}), signal: controller.signal });
clearTimeout(timer);
return res;
} catch (e: any) {
clearTimeout(timer);
lastErr = e;
continue;
}
}
throw lastErr || new Error('Failed to fetch from all API bases');
};
const handleViewNotebook = () => {
if (!workflowResult?.jupyter_notebook) {
setError('Notebook not available from backend');
return;
}
setIsNotebookOpen(true);
};
const handleStartTraining = async () => {
if (!workflowResult) return;
try {
setTrainingInfo({ status: 'starting', message: 'Starting training...' });
const res = await fetch(`${API_BASE}/api/ai-architect/start-training/${workflowResult.workflow_id}`, { method: 'POST' });
const data = await res.json();
if (!res.ok) {
throw new Error(data?.message || 'Failed to start training');
}
setTrainingInfo({ status: 'started', message: data?.message || 'Training started' });
} catch (e: any) {
setTrainingInfo({ status: 'error', message: e?.message || 'Training failed' });
}
};
const generateArchitecture = async () => {
// Allow trigger even if input is empty; backend can prompt for details
setIsGenerating(true);
setError(null);
setWorkflowResult(null);
setProcessingStep('Analyzing your request...');
setHasSubmittedQuestionnaire(false);
setShowQuestionnaire(false);
setQuestionnaireData(null);
setQuestionnaireShownForWorkflow(null);
try {
console.log('π Calling Ultimate AI Workflow Orchestrator via API client...');
// Update progress steps
setTimeout(() => setProcessingStep('Consulting MLE-STAR agents...'), 1000);
setTimeout(() => setProcessingStep('Searching for optimal datasets...'), 2000);
setTimeout(() => setProcessingStep('Generating training pipeline...'), 3000);
// Hit the real backend to create and run the full workflow (AβZ)
const res = await smartFetch('/api/ai-architect/create-workflow', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ user_request: userRequest, workflow_type: 'full_automation', priority: 'normal' })
}, 60000);
const data = await res.json();
if (!res.ok) throw new Error(data?.detail || data?.message || 'Workflow creation failed');
// Store workflowId and start polling status so the user sees the agents/stages progress
setWorkflowId(data.workflow_id);
// Seed immediate status so the progress card renders right away
setWorkflowStatus({
workflow_id: data.workflow_id,
status: 'running',
current_stage: 0,
stages: [],
progress_percentage: 0,
created_at: new Date().toISOString()
} as any);
setProcessingStep('Workflow started. Tracking progress...');
if (polling) clearInterval(polling);
const tick = async () => {
if (!data.workflow_id) return;
try {
const sRes = await fetch(`${API_BASE}/api/ai-architect/workflow-status/${data.workflow_id}?ts=${Date.now()}`, {
headers: { 'Cache-Control': 'no-cache' },
cache: 'no-store'
});
if (sRes.ok) {
const status = await sRes.json();
setWorkflowStatus(status);
// Show questionnaire when available and not already submitted
const dp = status?.solution?.data_plan;
const hasQuestionnaire = dp && ((dp.user_upload_needed === true) || (Array.isArray(dp.questionnaires) && dp.questionnaires.length > 0));
if (hasQuestionnaire &&
!showQuestionnaire &&
!hasSubmittedQuestionnaire &&
status.status === 'waiting_for_user_data' &&
questionnaireShownForWorkflow !== workflowId) {
console.log('π― Fetching intelligent questionnaire for workflow:', workflowId);
setQuestionnaireShownForWorkflow(workflowId);
// Fetch questionnaire data
fetchIntelligentQuestionnaire(workflowId).then(() => {
setShowQuestionnaire(true);
});
}
// When completed, stop polling and surface final artifacts
if (status.status === 'completed' || status.status === 'failed') {
if (polling) clearInterval(polling);
setProcessingStep(status.status === 'completed' ? 'Finalizing workflow...' : 'Workflow failed');
setWorkflowResult({
status: status.status === 'completed' ? 'success' : 'error',
workflow_id: status.workflow_id,
analysis: {
task_type: status?.solution?.training_pipeline?.architecture?.task_type || 'unspecified',
domain: status?.solution?.training_pipeline?.architecture?.domain || 'unspecified',
complexity: 'unspecified',
estimated_time: 'unspecified',
model_suggestions: [] as string[],
data_requirements: [] as string[]
},
data_plan: status?.solution?.data_plan || { internet_datasets: [], user_data_needed: false, user_data_instructions: '', pretrained_models: [], preprocessing_steps: [] },
training_pipeline: status?.solution?.training_pipeline || {},
message: 'Workflow completed',
jupyter_notebook: status?.solution?.jupyter_notebook || null,
solution: status?.solution || {}
});
setProcessingStep('');
}
}
} catch (e) {
// swallow polling errors
}
};
const intervalId = setInterval(tick, 1000);
setPolling(intervalId);
// fire immediately so user sees first stage
tick();
// Keep input so user can tweak and resubmit; do not clear request text
// setUserRequest('');
} catch (error: any) {
console.error('β AI Architect connection failed:', error);
setError(`Failed to connect to AI Workflow Orchestrator: ${error.message}`);
setProcessingStep('');
} finally {
// Ensure the button re-enables even on failures/timeouts
setIsGenerating(false);
// Focus button again for immediate retry UX
try { (document.querySelector('#genAgentsBtn') as HTMLButtonElement)?.focus(); } catch (err) {}
}
};
const clearAll = () => {
setUserRequest('');
setError(null);
setWorkflowResult(null);
setWorkflowStatus(null);
setShowQuestionnaire(false);
setHasSubmittedQuestionnaire(false);
setQuestionnaireData(null);
setQuestionnaireShownForWorkflow(null);
if (polling) clearInterval(polling);
};
// Removed old submitDataModal - now using handleQuestionnaireSubmit
// Removed old uploadFile function - file upload handled in UnifiedQuestionnaire
const fetchIntelligentQuestionnaire = async (workflowId: string) => {
try {
console.log('π‘ Fetching questionnaire data for workflow:', workflowId);
const response = await smartFetch(`/api/ai-architect/questionnaire/${workflowId}`);
if (response.ok) {
const data = await response.json();
console.log('π₯ Received questionnaire response:', data);
if (data.status === 'available' && data.questionnaire) {
console.log('β
Setting questionnaire data:', data.questionnaire);
setQuestionnaireData(data.questionnaire);
return true;
} else {
console.warn('β οΈ No questionnaire available, using defaults');
setQuestionnaireData(null);
return false;
}
} else {
console.error('β Failed to fetch questionnaire, status:', response.status);
setQuestionnaireData(null);
return false;
}
} catch (error) {
console.error('β Failed to fetch intelligent questionnaire:', error);
setQuestionnaireData(null);
return false;
}
};
const handleQuestionnaireSubmit = async (answers: Record<string, any>) => {
if (!workflowId) return;
try {
setIsSubmittingQuestionnaire(true);
const response = await fetch(`${API_BASE}/api/ai-architect/submit-questionnaire`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
workflow_id: workflowId,
answers: answers
})
});
if (response.ok) {
const result = await response.json();
console.log('β
Questionnaire submitted successfully:', result);
// Close questionnaire modal and mark as submitted
setShowQuestionnaire(false);
setHasSubmittedQuestionnaire(true);
setQuestionnaireData(null);
console.log('π Continuing workflow with answers...');
// Continue the workflow
const continueResponse = await fetch(`${API_BASE}/api/ai-architect/continue-workflow/${workflowId}`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(answers)
});
if (continueResponse.ok) {
const continueResult = await continueResponse.json();
console.log('β
Workflow continued successfully:', continueResult);
} else {
console.error('β Failed to continue workflow:', continueResponse.statusText);
}
} else {
throw new Error(`Failed to submit questionnaire: ${response.statusText}`);
}
} catch (error) {
console.error('β Failed to submit questionnaire:', error);
alert('Failed to submit questionnaire. Please try again.');
} finally {
setIsSubmittingQuestionnaire(false);
}
};
React.useEffect(() => {
const checkStatus = async () => {
if (workflowId) {
try {
const sRes = await fetch(`${API_BASE}/api/ai-architect/workflow-status/${workflowId}?ts=${Date.now()}`, {
headers: { 'Cache-Control': 'no-cache' },
cache: 'no-store'
});
if (sRes.ok) {
const status = await sRes.json();
setWorkflowStatus(status);
// Check if we need to show the questionnaire (keep it open once shown until user acts)
const dp = status?.solution?.data_plan;
const hasQuestionnaire = dp && ((dp.user_upload_needed === true) || (Array.isArray(dp.questionnaires) && dp.questionnaires.length > 0));
if (hasQuestionnaire && !hasSubmittedQuestionnaire) {
setShowQuestionnaire(true);
}
}
} catch (error) {
console.error('Error checking workflow status:', error);
}
}
};
if (workflowId) {
checkStatus();
const interval = setInterval(checkStatus, 3000);
return () => clearInterval(interval);
}
}, [workflowId, workflowResult]);
return (
<div className="w-full min-h-0 flex flex-col space-y-6 p-6 overflow-y-auto cyber-scrollbar">
{/* AI Architect Header */}
<Card className="border-blue-500/20 bg-gradient-to-r from-blue-900/20 to-purple-900/20">
<CardHeader>
<CardTitle className="flex items-center justify-between">
<div className="flex items-center space-x-2">
<Brain className="w-8 h-8 text-blue-400" />
<span className="text-2xl">ZPE AI Architect V2</span>
<Badge variant="secondary" className="bg-blue-500/20 text-blue-300">
Full Automation Mode + Dataset Architect
</Badge>
</div>
<div className="flex items-center space-x-2">
<Badge className="bg-[#00ffe7]/20 text-[#00ffe7] border-[#00ffe7]/30">
Ultimate AI Workflow ACTIVE
</Badge>
<Button variant="outline" size="sm" onClick={clearAll}>
Clear All
</Button>
</div>
</CardTitle>
</CardHeader>
</Card>
{/* Request Input */}
<Card>
<CardHeader>
<CardTitle className="flex items-center space-x-2">
<Brain className="w-5 h-5" />
<span>Natural Language Architecture Request</span>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
<Textarea
placeholder={`Describe the complete AI system you want to build (full automation from data to deployment)...
Examples:
β’ 'I need an AI to detect anomalies in manufacturing sensor data and deploy it to production'
β’ 'Create a complete voice recognition system for smart home control with monitoring'
β’ 'Build an end-to-end computer vision model to identify plant diseases with visualization'
β’ 'I want an AI that recognizes my face from my webcam and bypasses my password to log in'`}
value={userRequest}
onChange={(e) => setUserRequest(e.target.value)}
rows={8}
className="resize-none overflow-y-auto cyber-scrollbar"
/>
<div className="flex items-center space-x-4">
<Button
id="genAgentsBtn"
type="button"
onClick={(e) => { e.preventDefault(); e.stopPropagation(); generateArchitecture(); }}
disabled={isGenerating}
className="relative z-50 pointer-events-auto bg-gradient-to-r from-blue-600 to-purple-600 hover:from-blue-700 hover:to-purple-700"
>
{isGenerating ? (
<>
<Zap className="w-4 h-4 mr-2 animate-spin" />
{processingStep || 'AI Agents Analyzing...'}
</>
) : (
<>
<Brain className="w-4 h-4 mr-2" />
Generate with AI Agents
</>
)}
</Button>
<div className="flex items-center space-x-2 text-sm text-muted-foreground">
<Cpu className="w-4 h-4" />
<span>ZPE Consciousness Enhanced</span>
</div>
</div>
{/* Processing Status */}
{isGenerating && processingStep && (
<Alert className="border-blue-500/20 bg-blue-500/10">
<Zap className="h-4 w-4 animate-pulse" />
<AlertDescription className="text-blue-400">
<div className="flex items-center space-x-2">
<span>{processingStep}</span>
<div className="flex space-x-1">
<div className="w-2 h-2 bg-blue-400 rounded-full animate-bounce" style={{animationDelay: '0ms'}}></div>
<div className="w-2 h-2 bg-blue-400 rounded-full animate-bounce" style={{animationDelay: '150ms'}}></div>
<div className="w-2 h-2 bg-blue-400 rounded-full animate-bounce" style={{animationDelay: '300ms'}}></div>
</div>
</div>
</AlertDescription>
</Alert>
)}
{error && (
<Alert className="border-red-500/20 bg-red-500/10">
<AlertCircle className="h-4 w-4" />
<AlertDescription className="text-red-400">
{error}
</AlertDescription>
</Alert>
)}
</CardContent>
</Card>
{/* Live Agent/Stage Progress (visible immediately) */}
{workflowStatus && (
<Card className="border-cyan-500/20 bg-cyan-500/5">
<CardHeader>
<CardTitle className="flex items-center space-x-2 text-cyan-400">
<Clock className="w-5 h-5" />
<span>Agent Workflow Progress</span>
</CardTitle>
</CardHeader>
<CardContent className="space-y-3">
<div className="text-xs text-muted-foreground">Workflow ID: {workflowId}</div>
<div className="text-sm">Status: <span className="font-semibold">{workflowStatus.status}</span></div>
<div className="w-full h-2 bg-cyan-500/10 rounded">
<div className="h-2 bg-cyan-400 rounded transition-all duration-500" style={{ width: `${Math.min(100, workflowStatus.progress_percentage || 0)}%` }} />
</div>
<div className="space-y-3 max-h-64 overflow-auto cyber-scrollbar">
{(workflowStatus.stages || []).map((s: any, i: number) => (
<div key={i} className="space-y-1">
<div className="flex items-center justify-between text-sm">
<div className="flex items-center gap-2">
{s.status === 'completed' ? (
<CheckCircle className="w-4 h-4 text-green-400" />
) : s.status === 'running' ? (
<div className="w-4 h-4 rounded-full border-2 border-cyan-400 border-t-transparent animate-spin" />
) : (
<Circle className="w-4 h-4 text-muted-foreground" />
)}
<span className={s.status === 'running' ? 'text-cyan-400 font-medium' : ''}>{s.name}</span>
</div>
<span className="text-xs text-muted-foreground">{s.completed_at?.slice(11,19)}</span>
</div>
{/* Show current substep if stage is running */}
{s.status === 'running' && s.current_substep && (
<div className="ml-6 pl-2 border-l border-cyan-500/30">
<div className="flex items-center gap-2 text-xs text-cyan-400/80">
<div className="w-1.5 h-1.5 bg-cyan-400 rounded-full animate-pulse" />
<span>{s.current_substep}</span>
</div>
</div>
)}
{/* Show completed substeps */}
{s.substeps && s.substeps.length > 0 && (
<div className="ml-6 pl-2 border-l border-gray-500/30 space-y-1">
{s.substeps.map((sub: any, si: number) => (
<div key={si} className="flex items-center gap-2 text-xs text-muted-foreground">
<CheckCircle className="w-3 h-3 text-green-400/60" />
<span>{sub.name}</span>
{sub.found !== undefined && <span className="text-cyan-400">({sub.found} found)</span>}
</div>
))}
</div>
)}
</div>
))}
</div>
</CardContent>
</Card>
)}
{/* Workflow Results */}
{workflowResult && (
<>
{/* Analysis Results */}
<Card className="border-green-500/20 bg-green-500/5">
<CardHeader>
<CardTitle className="flex items-center space-x-2 text-green-400">
<CheckCircle className="w-5 h-5" />
<span>AI Analysis Complete</span>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
{/* Concise AβZ Plan Summary */}
<div className="text-sm text-muted-foreground">
End-to-end plan generated by MLE-STAR agents and your PyTorch architect: Data discovery β Data plan β Advanced prep & validation β Notebook generation β Training pipeline β Deployment hooks.
</div>
<div className="grid grid-cols-2 gap-4">
<div>
<label className="text-sm font-medium text-muted-foreground">Task Type</label>
<p className="text-lg font-semibold">{workflowResult.analysis?.task_type || 'Not specified'}</p>
</div>
<div>
<label className="text-sm font-medium text-muted-foreground">Domain</label>
<p className="text-lg font-semibold">{workflowResult.analysis?.domain || 'Not specified'}</p>
</div>
<div>
<label className="text-sm font-medium text-muted-foreground">Complexity</label>
<p className="text-lg font-semibold">{workflowResult.analysis?.complexity || 'Not specified'}</p>
</div>
<div>
<label className="text-sm font-medium text-muted-foreground">Estimated Time</label>
<p className="text-lg font-semibold">{workflowResult.analysis?.estimated_time || 'Not specified'}</p>
</div>
</div>
<div>
<label className="text-sm font-medium text-muted-foreground">Recommended Models</label>
<div className="flex flex-wrap gap-2 mt-2">
{(workflowResult.analysis?.model_suggestions || []).map((model, idx) => (
<Badge key={idx} className="bg-blue-500/20 text-blue-300">
{model}
</Badge>
))}
</div>
</div>
</CardContent>
</Card>
{/* Data Plan */}
<Card className="border-purple-500/20 bg-purple-500/5">
<CardHeader>
<CardTitle className="flex items-center space-x-2 text-purple-400">
<Database className="w-5 h-5" />
<span>Intelligent Data Plan</span>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
{/* Internet Datasets */}
{(workflowResult.data_plan?.internet_datasets?.length || 0) > 0 && (
<div>
<label className="text-sm font-medium text-muted-foreground">Available Datasets</label>
<div className="space-y-2 mt-2">
{(workflowResult.data_plan?.internet_datasets || []).map((dataset, idx) => (
<div key={idx} className="p-3 border border-purple-500/20 rounded-lg bg-purple-500/5">
<div className="flex justify-between items-start">
<div>
<h4 className="font-semibold">{dataset.name}</h4>
<p className="text-sm text-muted-foreground">{dataset.description}</p>
<p className="text-xs text-purple-400">Size: {dataset.download_size}</p>
</div>
<Button variant="outline" size="sm">
<Download className="w-4 h-4" />
</Button>
</div>
</div>
))}
</div>
</div>
)}
{/* User Data Requirements */}
{workflowResult.data_plan?.user_data_needed && (
<div>
<label className="text-sm font-medium text-muted-foreground">Personal Data Required</label>
<Alert className="border-yellow-500/20 bg-yellow-500/10 mt-2">
<AlertCircle className="h-4 w-4" />
<AlertDescription className="text-yellow-400 whitespace-pre-line">
{workflowResult.data_plan?.user_data_instructions || 'No specific instructions'}
</AlertDescription>
</Alert>
</div>
)}
{/* Pretrained Models */}
{(workflowResult.data_plan?.pretrained_models?.length || 0) > 0 && (
<div>
<label className="text-sm font-medium text-muted-foreground">Pretrained Models</label>
<div className="flex flex-wrap gap-2 mt-2">
{(workflowResult.data_plan?.pretrained_models || []).map((model, idx) => (
<Badge key={idx} className="bg-green-500/20 text-green-300">
{model.name}
</Badge>
))}
</div>
</div>
)}
{/* Preprocessing Steps */}
<div>
<label className="text-sm font-medium text-muted-foreground">Preprocessing Pipeline</label>
<div className="space-y-1 mt-2">
{(workflowResult.data_plan?.preprocessing_steps || []).map((step, idx) => (
<div key={idx} className="flex items-center space-x-2 text-sm">
<Settings className="w-4 h-4 text-blue-400" />
<span>{step}</span>
</div>
))}
</div>
</div>
</CardContent>
</Card>
{/* Training Pipeline */}
<Card className="border-orange-500/20 bg-orange-500/5">
<CardHeader>
<CardTitle className="flex items-center space-x-2 text-orange-400">
<Code2 className="w-5 h-5" />
<span>Training Pipeline Generated</span>
</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
<div className="grid grid-cols-2 gap-4">
<div>
<label className="text-sm font-medium text-muted-foreground">Model Architecture</label>
<p className="text-lg font-semibold">
{typeof workflowResult.training_pipeline?.architecture === 'object'
? workflowResult.training_pipeline?.architecture?.model_name || 'Custom Architecture'
: workflowResult.training_pipeline?.architecture || 'Not specified'}
</p>
</div>
<div>
<label className="text-sm font-medium text-muted-foreground">Backbone</label>
<p className="text-lg font-semibold">{workflowResult.training_pipeline?.backbone || 'Not specified'}</p>
</div>
</div>
{/* Training Pipeline Generated section buttons */}
<div className="flex items-center gap-3">
<Button
variant="secondary"
onClick={() => {
if (workflowId) {
window.open(`${API_BASE}/api/ai-architect/notebook-html/${workflowId}`, '_blank');
}
}}
>
View Jupyter Notebook
</Button>
<Button
className="bg-green-700 hover:bg-green-800"
onClick={async () => {
if (!workflowId) return;
const res = await fetch(`${API_BASE}/api/ai-architect/start-training/${workflowId}`, { method: 'POST' });
if (!res.ok) {
const t = await res.text();
setError(`Failed to start training: ${t}`);
} else {
setProcessingStep('Starting training...');
}
}}
>
Start Training
</Button>
<Button
variant="outline"
onClick={() => { if (workflowId) window.location.href = `/deep-learning/train?workflow=${workflowId}`; }}
>
Go to Train Page
</Button>
<Button
variant="secondary"
onClick={() => { if (workflowId) window.open(`${API_BASE}/api/ai-architect/artifacts/${workflowId}/zip`, '_blank'); }}
>
Download Artifacts
</Button>
{/* New: App Builder & Deployer */}
<Button
variant="secondary"
onClick={async () => {
try {
if (!workflowId) return;
setProcessingStep('Preparing app artifacts...');
const res = await fetch(`${API_BASE}/api/app-builder/prepare-artifacts/${workflowId}`, { method: 'POST' });
const data = await res.json();
if (!res.ok) throw new Error(data?.error || 'Prepare artifacts failed');
setProcessingStep(`App prepared at ${data.app_dir}`);
} catch (e: any) {
setError(e.message);
setProcessingStep('');
}
}}
>
Prepare App
</Button>
<Button
variant="outline"
onClick={async () => {
try {
if (!workflowId) return;
setProcessingStep('Building container image...');
const res = await fetch(`${API_BASE}/api/deployer/build-image/${workflowId}`, { method: 'POST' });
const data = await res.json();
if (!res.ok) throw new Error(data?.error || 'Build image failed');
setProcessingStep(`Image build status: ${data.status}${data.image ? ' (' + data.image + ')' : ''}`);
} catch (e: any) {
setError(e.message);
setProcessingStep('');
}
}}
>
Build Image
</Button>
<Button
variant="default"
onClick={async () => {
try {
if (!workflowId) return;
setProcessingStep('Starting local container...');
const res = await fetch(`${API_BASE}/api/deployer/run-local/${workflowId}`, { method: 'POST' });
const data = await res.json();
if (!res.ok) throw new Error(data?.error || 'Run local failed');
setProcessingStep(`Local server: http://localhost:${(data.ports||[8080])[0]}/health`);
} catch (e: any) {
setError(e.message);
setProcessingStep('');
}
}}
>
Run Locally
</Button>
</div>
{trainingInfo?.status && trainingInfo.status !== 'idle' && (
<div className="mt-3 text-sm">
<span className={
trainingInfo.status === 'started' ? 'text-green-400' : trainingInfo.status === 'error' ? 'text-red-400' : 'text-muted-foreground'
}>
{trainingInfo.message}
</span>
</div>
)}
<Alert className="border-orange-500/20 bg-orange-500/10">
<CheckCircle className="h-4 w-4" />
<AlertDescription className="text-orange-400">
Complete training pipeline generated with {Object.keys(workflowResult.training_pipeline || {}).length} components:
preprocessing, training, evaluation, and deployment code.
</AlertDescription>
</Alert>
</CardContent>
</Card>
</>
)}
{/* Dataset Architect Integration Notice */}
<Card className="border-[#00ffe7]/30 bg-[#00ffe7]/5">
<CardHeader>
<CardTitle className="flex items-center space-x-2 text-[#00ffe7]">
<CheckCircle className="w-5 h-5" />
<span>Ultimate AI Workflow Integration</span>
</CardTitle>
</CardHeader>
<CardContent>
<div className="space-y-3">
<p className="text-[#00ffe7]/80">
The Ultimate AI Workflow Orchestrator is now FULLY ACTIVE! It provides complete automation from
prompt analysis to deployment-ready models with real datasets and Jupyter notebooks.
</p>
<div className="flex items-center space-x-2">
<Badge className="bg-[#39ff14]/20 text-[#39ff14] border-[#39ff14]/30">
<CheckCircle className="w-3 h-3 mr-1" />
Smart Prompt Analysis
</Badge>
<Badge className="bg-[#39ff14]/20 text-[#39ff14] border-[#39ff14]/30">
<CheckCircle className="w-3 h-3 mr-1" />
Real Dataset Discovery
</Badge>
<Badge className="bg-[#39ff14]/20 text-[#39ff14] border-[#39ff14]/30">
<CheckCircle className="w-3 h-3 mr-1" />
Complete Training Pipeline
</Badge>
</div>
</div>
</CardContent>
</Card>
{/* Notebook Modal */}
<Dialog open={isNotebookOpen} onOpenChange={setIsNotebookOpen}>
<DialogContent className="max-w-[90vw] w-[90vw] max-h-[90vh] h-[90vh] overflow-hidden">
<DialogHeader>
<DialogTitle className="flex items-center gap-2">
<FileText className="w-4 h-4" />
{workflowResult?.jupyter_notebook?.file_name || 'Generated Notebook'}
</DialogTitle>
</DialogHeader>
{workflowId ? (
<iframe
title="Notebook Viewer"
src={`${API_BASE}/api/ai-architect/notebook-html/${workflowId}`}
className="w-full h-[80vh] rounded border"
/>
) : (
<div className="text-sm text-muted-foreground">Notebook content not available</div>
)}
</DialogContent>
</Dialog>
{/* Unified Questionnaire Modal */}
<UnifiedQuestionnaire
isOpen={showQuestionnaire}
onClose={() => {
console.log('πͺ Closing questionnaire modal');
setShowQuestionnaire(false);
setHasSubmittedQuestionnaire(true);
}}
onSubmit={handleQuestionnaireSubmit}
isSubmitting={isSubmittingQuestionnaire}
workflowId={workflowId}
questionnaireData={questionnaireData}
/>
</div>
);
} |