Spaces:
Runtime error
Runtime error
File size: 30,488 Bytes
ca28016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
import React, { useState, useEffect } from "react";
import { Button } from "@/components/ui/button";
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
import { Badge } from "@/components/ui/badge";
import { Input } from "@/components/ui/input";
import { Label } from "@/components/ui/label";
import { Slider } from "@/components/ui/slider";
import { Switch } from "@/components/ui/switch";
import { Select, SelectContent, SelectItem, SelectTrigger, SelectValue } from "@/components/ui/select";
import { Tabs, TabsList, TabsTrigger, TabsContent } from "@/components/ui/tabs";
import { ScrollArea } from "@/components/ui/scroll-area";
import { Separator } from "@/components/ui/separator";
import { Play, Settings, Zap, Brain, Download, Upload, Rocket, Target, GitMerge, Cpu, Code, Eye, Lightbulb, X, CheckCircle, ArrowRight, Database, ExternalLink } from "lucide-react";
import { motion, AnimatePresence } from "framer-motion";
import { RadioGroup, RadioGroupItem } from "@/components/ui/radio-group";
import { Checkbox } from "@/components/ui/checkbox";
import { Textarea } from "@/components/ui/textarea";
import { InvokeLLM, UploadFile } from "@/integrations/Core";
import CodeModal from "./CodeModal";
import DatasetCard from "./DatasetCard";
const taskCategories = [
{
group: "Computer Vision",
tasks: [
{ label: "Image Classification", value: "image_classification" },
{ label: "Image Generation", value: "image_generation" },
{ label: "Image Segmentation", value: "image_segmentation" },
{ label: "Object Detection", value: "object_detection" },
{ label: "Face Recognition", value: "face_recognition" },
{ label: "Style Transfer", value: "style_transfer" },
{ label: "Super Resolution", value: "super_resolution" },
{ label: "Pose Estimation", value: "pose_estimation" },
{ label: "Gesture Recognition", value: "gesture_recognition" },
{ label: "OCR (Text Recognition)", value: "ocr" },
{ label: "Document Analysis", value: "document_analysis" },
],
},
{
group: "Natural Language Processing",
tasks: [
{ label: "Text Classification", value: "text_classification" },
{ label: "Text Generation", value: "text_generation" },
{ label: "Language Translation", value: "language_translation" },
{ label: "Sentiment Analysis", value: "sentiment_analysis" },
{ label: "Named Entity Recognition", value: "ner" },
{ label: "Question Answering", value: "question_answering" },
{ label: "Text Summarization", value: "text_summarization" },
{ label: "Chatbot/Conversational AI", value: "chatbot" },
],
},
{
group: "Audio & Speech",
tasks: [
{ label: "Speech Recognition", value: "speech_recognition" },
{ label: "Speech Synthesis (TTS)", value: "speech_synthesis" },
{ label: "Music Generation", value: "music_generation" },
{ label: "Audio Classification", value: "audio_classification" },
{ label: "Sound Enhancement", value: "sound_enhancement" },
],
},
{
group: "Video & Motion",
tasks: [
{ label: "Video Classification", value: "video_classification" },
{ label: "Video Generation", value: "video_generation" },
{ label: "Deepfake Detection", value: "deepfake_detection" },
],
},
{
group: "Data Science & Analytics",
tasks: [
{ label: "Time Series Forecasting", value: "time_series_forecasting" },
{ label: "Anomaly Detection", value: "anomaly_detection" },
{ label: "Recommendation System", value: "recommendation_system" },
{ label: "Tabular Classification", value: "tabular_classification" },
{ label: "Tabular Regression", value: "tabular_regression" },
{ label: "Clustering", value: "clustering" },
{ label: "Financial Prediction", value: "financial_prediction" },
{ label: "Fraud Detection", value: "fraud_detection" },
],
},
{
group: "Advanced AI",
tasks: [
{ label: "Reinforcement Learning", value: "reinforcement_learning" },
{ label: "Game AI", value: "game_ai" },
{ label: "Autonomous Driving", value: "autonomous_driving" },
{ label: "Medical Diagnosis", value: "medical_diagnosis" },
{ label: "Drug Discovery", value: "drug_discovery" },
],
},
];
interface AIAdvisorProps {
onClose: () => void;
}
interface ProjectData {
goal: string;
taskTypes: string[];
selectedDatasets: any[];
dataStrategies: string[];
customDataFile: any;
dataSynthesisPrompt: string;
numClasses: string;
accuracyTarget: string;
textStyle: string;
imageResolution: string;
objectSize: string;
realTimeRequirement: string;
audioLength: string;
dataFormat: string;
modelStrategy: string;
mergeModelSuggestion: string;
computeChoice: string;
productionScale: string;
}
async function createProject(project: any) {
const res = await fetch('http://localhost:8000/projects', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(project),
});
if (!res.ok) throw new Error('Failed to create project');
return await res.json();
}
export default function AIAdvisor({ onClose }: AIAdvisorProps) {
const [step, setStep] = useState(0);
const [isLoading, setIsLoading] = useState(false);
const [projectData, setProjectData] = useState<ProjectData>({
goal: "",
taskTypes: [],
selectedDatasets: [],
dataStrategies: [],
customDataFile: null,
dataSynthesisPrompt: "",
numClasses: "",
accuracyTarget: "",
textStyle: "",
imageResolution: "",
objectSize: "",
realTimeRequirement: "",
audioLength: "",
dataFormat: "",
modelStrategy: "scratch",
mergeModelSuggestion: "",
computeChoice: "cloud",
productionScale: "1"
});
const [aiSuggestedDatasets, setAiSuggestedDatasets] = useState<any[]>([]);
const [recommendations, setRecommendations] = useState<any>(null);
const [finalTrainingParams, setFinalTrainingParams] = useState({});
const [zpeTrainingCode, setZpeTrainingCode] = useState("");
const [isCodeModalOpen, setIsCodeModalOpen] = useState(false);
const [datasetSearchLoading, setDatasetSearchLoading] = useState(false);
const [datasetSearchError, setDatasetSearchError] = useState("");
const steps = [
{ title: "Goal", icon: Target },
{ title: "Task", icon: Zap },
{ title: "Datasets", icon: Download },
{ title: "Custom Data", icon: Upload },
{ title: "Task Specifics", icon: Settings },
{ title: "Model Strategy", icon: GitMerge },
{ title: "Compute & Scale", icon: Cpu },
{ title: "AI Review", icon: Brain },
{ title: "AI Blueprint", icon: Code }
];
const handleTaskToggle = (taskValue: string) => {
setProjectData(pd => {
const newTasks = pd.taskTypes.includes(taskValue)
? pd.taskTypes.filter(t => t !== taskValue)
: [...pd.taskTypes, taskValue];
return { ...pd, taskTypes: newTasks };
});
};
const handleDataStrategyToggle = (strategy: string) => {
setProjectData(pd => {
const newStrategies = pd.dataStrategies.includes(strategy)
? pd.dataStrategies.filter(s => s !== strategy)
: [...pd.dataStrategies, strategy];
return { ...pd, dataStrategies: newStrategies };
});
};
const handleDatasetSelect = (datasetToToggle: any) => {
setProjectData(currentData => {
const isAlreadySelected = currentData.selectedDatasets.some(
d => d.identifier === datasetToToggle.identifier
);
const updatedSelectedDatasets = isAlreadySelected
? currentData.selectedDatasets.filter(d => d.identifier !== datasetToToggle.identifier)
: [...currentData.selectedDatasets, datasetToToggle];
return {
...currentData,
selectedDatasets: updatedSelectedDatasets,
};
});
};
const fetchDatasetsFromAPI = async () => {
setDatasetSearchLoading(true);
setDatasetSearchError("");
try {
const res = await fetch("http://localhost:8000/datasets/search", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ goal: projectData.goal, tasks: projectData.taskTypes })
});
if (!res.ok) throw new Error("API error");
const data = await res.json();
setAiSuggestedDatasets(data.datasets || []);
} catch (err) {
setDatasetSearchError("Failed to fetch datasets. Try again later.");
setAiSuggestedDatasets([]);
}
setDatasetSearchLoading(false);
};
const handleGetFinalRecommendations = async () => {
setIsLoading(true);
let modelMergePrompt = "";
if (projectData.modelStrategy === 'merge') {
const mergeSuggestions = await InvokeLLM({
prompt: `Based on the project goal "${projectData.goal}" and task types "${projectData.taskTypes.join(', ')}", suggest the best single open-source model from HuggingFace to use as a base for fine-tuning. Provide only the model identifier (e.g., 'bert-base-uncased').`
});
modelMergePrompt = `The user wants to merge with a base model. The suggested model is: ${mergeSuggestions}. Consider this in your architecture recommendation.`;
setProjectData(pd => ({...pd, mergeModelSuggestion: mergeSuggestions}));
}
const response = await InvokeLLM({
prompt: `You are THE worlds' absolute expert at ML/AI Engineering. You are currently working for me and you are in my no-code,
ML/AI building platform called ZPE.
You are a part of a series of advisors that guide the user through the process of building their ML/AI project,
that form a sequence called HS-QNN (Hilbert Space Quantum Neural Network). The user has provided the following project requirements.
Your task is to generate the FULL BLUEPRINT of every detail of the AI building process and load the suggested configurations, datasets,
zpe parameters, and other parameters, and all other necessary variables including the model architecture, training parameters, and zpe pytorch code.
You are the wolds best pytorch engineer and you are also an expert in the field of pytorch.
You are also an expert in the field of pytorch lightning and you are also an expert in the field of pytorch geometric.
You are also an expert in the field of pytorch vision and you are also an expert in the field of pytorch audio.
You are also an expert in the field of pytorch text and you are also an expert in the field of pytorch video.
You are also an expert in the field of pytorch data and you are also an expert in the field of pytorch metrics.
You are also an expert in the field of pytorch optimizers and you are also an expert in the field of pytorch loss functions.
You are also an expert in the field of pytorch metrics and you are also an expert in the field of pytorch data.
You are also an expert in the field of Quantum Computing and Quantum Machine Learning.
You are also an expert in the field of Neural Networks and Deep Learning.
You are also an expert in the field of Computer Vision and Natural Language Processing.
You are also an expert in the field of Audio and Speech Processing.
You are also an expert in the field of Video and Motion Processing.
You are also an expert in the field of Data Science and Analytics.
You are also an expert in the field of Advanced AI.
You are also an expert in the field of Reinforcement Learning and Game AI.
You are also an expert in the field of Autonomous Driving and Medical Diagnosis.
You are also an expert in the field of Drug Discovery and Financial Prediction.
You are also an expert in the field of Fraud Detection and Anomaly Detection.
You are also an expert in the field of Recommendation System and Tabular Classification.
You are also an expert in the field of Tabular Regression and Clustering.
You are also an expert in the field of Financial Prediction and Fraud Detection.
You are also an expert in the field of Anomaly Detection and Recommendation System.
You are also an expert in the field of Tabular Classification and Tabular Regression.
You are also an expert in the field of Clustering and Financial Prediction.
You are also an expert in the field of Fraud Detection and Anomaly Detection.
You are also an expert in the field of Recommendation System and Tabular Classification.
You are also an expert in the field of Tabular Regression and Clustering.
You are also an expert in the field of Financial Prediction and Fraud Detection.
You are also an expert in the field of Anomaly Detection and Recommendation System.
You are also an expert in the field of Tabular Classification and Tabular Regression.
You are also an expert in the field of Clustering and Financial Prediction.
You are also an expert in the field of Fraud Detection and Anomaly Detection.
You are also an expert in the field of batch size detection and batch size optimization.
You are also an expert in the field of learning rate detection and learning rate optimization.
You are also an expert in the field of optimizer detection and optimizer optimization.
You are also an expert in the field of loss function detection and loss function optimization.
You are also an expert in the field of metric detection and metric optimization.
You are also an expert in the field of data augmentation detection and data augmentation optimization.
You are also an expert in the field of data preprocessing detection and data preprocessing optimization.
You are also an expert Quantum Physicist.
You are also an expert in Sacred Geometry.
You are also an expert in the field of Quantum Entanglement.
You are also an expert in the field of Quantum Computing.
You are also an expert in the field of Kabbalah.
You are also an expert in the field of the Tree of Life.
You are also an expert in the field of the Sefer Yetzirah.
You are also an expert in the field of Quantum Physics.
You are also an expert in the field of Quantum Mechanics.
You are also an expert in the field of Quantum Field Theory.
You are also an expert in the field of the ZPE platform.
You are also an expert in the field of Task Recognition from the user's project goal and task types and data.
You are also an expert in the field of Data Synthesis from the user's project goal and task types and data.
You are also an expert in the field of Data Preprocessing from the user's project goal and task types and data.
You are also an expert in the field of Data Augmentation from the user's project goal and task types and data.
You are also an expert in the field of Data Loading from the user's project goal and task types and data.
You are also an expert in the field of Data Validation from the user's project goal and task types and data.
You are also an expert in the field of Data Metrics from the user's project goal and task types and data.
You are also an expert in the field of Data Visualization from the user's project goal and task types and data.
You are also an expert in the field of Data Analysis from the user's project goal and task types and data.
You are also an expert in the field of Data Mining from the user's project goal and task types and data.
You will make sure that the blueprint is provided in a JSON that fits with the training monitor.
- Project Goal: ${projectData.goal}
- Task Types: ${projectData.taskTypes.join(', ')}
- Selected Datasets: ${projectData.selectedDatasets.map(d => d.name).join(', ')}
- Task Specifics: Number of classes: ${projectData.numClasses || 'N/A'}, Text Style: ${projectData.textStyle || 'N/A'}, Object Size: ${projectData.objectSize || 'N/A'}, Image Resolution: ${projectData.imageResolution || 'N/A'}, Audio Length: ${projectData.audioLength || 'N/A'}, Data Format: ${projectData.dataFormat || 'N/A'}, Real-time: ${projectData.realTimeRequirement || 'N/A'}, Accuracy Target: ${projectData.accuracyTarget || 'N/A'}
- Production Scale: ${projectData.productionScale} users.
- Custom Data Strategies: ${projectData.dataStrategies.join(', ') || 'None'}
- Custom Data File: ${projectData.customDataFile ? 'Provided' : 'Not provided'}
- Data Synthesis Prompt: ${projectData.dataSynthesisPrompt || 'None'}
- Model Strategy: ${projectData.modelStrategy}. ${modelMergePrompt}
- Compute: ${projectData.computeChoice}
Based on this, provide:
1. A final recommended model architecture (e.g., "ZPE-Enhanced ResNet-18").
2. A complete set of ZPE-specific training parameters.
3. A recommended GPU for training (e.g., 'NVIDIA T4', 'NVIDIA A100').
`,
response_json_schema: {
type: "object",
properties: {
architecture: {
type: "object",
properties: {
recommended: { type: "string" },
reasoning: { type: "string" }
}
},
training_parameters: {
type: "object",
properties: {
total_epochs: { type: "number" },
batch_size: { type: "number" },
learning_rate: { type: "number" },
dropout_fc: { type: "number" },
zpe_regularization_strength: { type: "number" },
quantum_circuit_size: { type: "number" },
quantum_mode: { type: "boolean" }
}
},
gpu_recommendation: { type: "string" }
}
}
});
setRecommendations(response);
setFinalTrainingParams(response.training_parameters);
setIsLoading(false);
setStep(s => s + 1);
};
const handleGenerateCodeAndBlueprint = async () => {
setIsLoading(true);
const zpeTemplate = `# ZPE-Enhanced PyTorch Training Script import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
from torch.optim.lr_scheduler import CosineAnnealingLR
import numpy as np
# ZPEDeepNet Definition
class ZPEDeepNet(nn.Module):
def __init__(self, output_size=10, sequence_length=10):
super(ZPEDeepNet, self).__init__()
self.sequence_length = sequence_length
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.zpe_flows = [torch.ones(sequence_length, device=self.device) for _ in range(6)]
self.conv1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.conv4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc = nn.Sequential(
nn.Flatten(),
nn.Linear(512, 2048),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, output_size)
)
self.shortcut1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(2)
)
self.shortcut2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(2)
)
self.shortcut3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(2)
)
self.shortcut4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0),
nn.MaxPool2d(2)
)
def perturb_zpe_flow(self, data, zpe_idx, feature_size):
batch_mean = torch.mean(data.detach(), dim=0).view(-1)
divisible_size = (batch_mean.size(0) // self.sequence_length) * self.sequence_length
batch_mean_truncated = batch_mean[:divisible_size]
reshaped = batch_mean_truncated.view(-1, self.sequence_length)
perturbation = torch.mean(reshaped, dim=0)
perturbation = torch.tanh(perturbation * 0.3)
momentum = 0.9 if zpe_idx < 4 else 0.7
with torch.no_grad():
self.zpe_flows[zpe_idx] = momentum * self.zpe_flows[zpe_idx] + (1 - momentum) * (1.0 + perturbation)
self.zpe_flows[zpe_idx] = torch.clamp(self.zpe_flows[zpe_idx], 0.8, 1.2)
def apply_zpe(self, x, zpe_idx, spatial=True):
self.perturb_zpe_flow(x, zpe_idx, x.size(1) if spatial else x.size(-1))
flow = self.zpe_flows[zpe_idx]
if spatial:
size = x.size(2) * x.size(3)
flow_expanded = flow.repeat(size // self.sequence_length + 1)[:size].view(1, 1, x.size(2), x.size(3))
flow_expanded = flow_expanded.expand(x.size(0), x.size(1), x.size(2), x.size(3))
else:
flow_expanded = flow.repeat(x.size(-1) // self.sequence_length + 1)[:x.size(-1)].view(1, -1)
flow_expanded = flow_expanded.expand(x.size(0), x.size(-1))
return x * flow_expanded
def forward(self, x):
x = self.apply_zpe(x, 0)
residual = self.shortcut1(x)
x = self.conv1(x) + residual
x = self.apply_zpe(x, 1)
residual = self.shortcut2(x)
x = self.conv2(x) + residual
x = self.apply_zpe(x, 2)
residual = self.shortcut3(x)
x = self.conv3(x) + residual
x = self.apply_zpe(x, 3)
residual = self.shortcut4(x)
x = self.conv4(x) + residual
x = self.apply_zpe(x, 4)
x = self.fc(x)
x = self.apply_zpe(x, 5, spatial=False)
return x
def analyze_zpe_effect(self):
return [torch.mean(torch.abs(flow - 1.0)).item() for flow in self.zpe_flows]
# Data Setup
train_transform = transforms.Compose([
transforms.RandomRotation(20),
transforms.RandomAffine(degrees=0, translate=(0.2, 0.2)),
transforms.RandomCrop(28, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.RandomErasing(p=0.5, scale=(0.02, 0.2))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=test_transform)
train_size = int(0.9 * len(train_dataset))
val_size = len(train_dataset) - train_size
train_subset, val_subset = torch.utils.data.random_split(train_dataset, [train_size, val_size])
train_loader = DataLoader(train_subset, batch_size=32, shuffle=True, num_workers=2)
val_loader = DataLoader(val_subset, batch_size=32, shuffle=False, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=2)
# MixUp Function
def mixup(data, targets, alpha=1.0):
indices = torch.randperm(data.size(0))
shuffled_data = data[indices]
shuffled_targets = targets[indices]
lam = np.random.beta(alpha, alpha)
data = lam * data + (1 - lam) * shuffled_data
return data, targets, shuffled_targets, lam
# Training Setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ZPEDeepNet(output_size=10).to(device)
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = CosineAnnealingLR(optimizer, T_max=30)
# Training Loop
num_epochs = 30
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
data, target_a, target_b, lam = mixup(data, target)
optimizer.zero_grad()
output = model(data)
loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b)
zpe_effects = model.analyze_zpe_effect()
total_loss = loss + 0.001 * sum(zpe_effects)
total_loss.backward()
optimizer.step()
if batch_idx % 200 == 0:
print(f'Epoch {epoch+1}/{num_epochs}, Batch {batch_idx}, Loss: {loss.item():.4f}, '
f'ZPE Effects: {zpe_effects}')
scheduler.step()
# Validation
model.eval()
val_correct = 0
val_total = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
_, predicted = torch.max(output.data, 1)
val_total += target.size(0)
val_correct += (predicted == target).sum().item()
val_acc = 100 * val_correct / val_total
print(f'Epoch {epoch+1}/{num_epochs}, Validation Accuracy: {val_acc:.2f}%')
# TTA Function
def tta_predict(model, data, num_augmentations=10):
model.eval()
outputs = []
with torch.no_grad():
outputs.append(model(data))
aug_transform = transforms.Compose([
transforms.RandomRotation(10),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
transforms.Normalize((0.5,), (0.5,))
])
data_denorm = (data * 0.5) + 0.5
for _ in range(num_augmentations - 1):
aug_data = torch.stack([aug_transform(data_denorm[i].cpu()) for i in range(data.size(0))]).to(device)
output = model(aug_data)
outputs.append(output)
return torch.mean(torch.stack(outputs), dim=0)
# Test with TTA
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = tta_predict(model, data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
print(f'Accuracy on test set with TTA: {accuracy:.2f}%')
# Save Model
torch.save(model.state_dict(), '/content/zpe_deepnet_colab.pth')
pad_h, pad_w = (h - new_h) // 2, (w - new_w) // 2
aug_x = torch.nn.functional.pad(aug_x, [pad_w, pad_w, pad_h, pad_h])
predictions.append(model(aug_x).unsqueeze(0))
rotations = [5, -5]
for angle in rotations:
theta = torch.tensor([[[torch.cos(torch.tensor(angle * np.pi / 180)), torch.sin(torch.tensor(angle * np.pi / 180)), 0],
[-torch.sin(torch.tensor(angle * np.pi / 180)), torch.cos(torch.tensor(angle * np.pi / 180)), 0]]],
dtype=torch.float32, device=x.device)
theta = theta.repeat(batch_size, 1, 1)
grid = torch.nn.functional.affine_grid(theta, [batch_size, x.size(1), h, w], align_corners=True)
aug_x = torch.nn.functional.grid_sample(x, grid, mode='bilinear', align_corners=True)
predictions.append(model(aug_x).unsqueeze(0))
flips = [torch.flip(x, [2]), torch.flip(x, [3])]
for aug_x in flips:
predictions.append(model(aug_x).unsqueeze(0))
weights = torch.tensor([1.0] + [0.75] * 9 + [0.9] * 8 + [0.85] * 8 + [0.8] * 2 + [0.7] * 2, device=x.device, dtype=torch.float32)
weights = weights / weights.sum()
weighted_preds = torch.cat(predictions, dim=0) * weights.view(-1, 1, 1)
return torch.sum(weighted_preds, dim=0)
if __name__ == "__main__":
torch.manual_seed(42)
np.random.seed(42)
model = train_zpe_model()
# Dataset loading and transformations would be implemented here
# based on the user's selected datasets and custom data
`;
const response = await InvokeLLM({
prompt: `Based on the following complete ZPE PyTorch model template and user-defined parameters, generate the final, complete, and runnable PyTorch training script.
**User Configuration & Hyperparameters:**
${JSON.stringify({project: projectData, params: finalTrainingParams}, null, 2)}
**Instructions:**
1. Use the provided ZPE model templates as base
2. Customize the architecture for task types: ${JSON.stringify(projectData.taskTypes)}
3. Include data loading for datasets: ${JSON.stringify(projectData.selectedDatasets.map(d=>d.identifier))}
4. Generate complete training script with ZPE quantum effects
5. Include proper model save/load functionality
6. Add validation and metrics tracking
Generate the complete, production-ready script.`,
});
setZpeTrainingCode(response);
setIsLoading(false);
setStep(s => s + 1);
};
const handleStartTraining = async () => {
const newProject = await createProject({
name: projectData.goal.substring(0, 50),
description: projectData.goal,
goal: projectData.goal,
task_types: projectData.taskTypes,
output_format: projectData.dataFormat || '',
datasets: projectData.selectedDatasets.map(d => d.identifier),
constraints: [],
model_config: finalTrainingParams,
model_id: '',
status: 'data_prep',
});
const encodedParams = btoa(JSON.stringify(finalTrainingParams));
window.location.href = `/TrainModel?advisorParams=${encodedParams}&projectId=${newProject.id}`;
onClose();
};
const handleNextStep = () => {
if (step === 1) {
fetchDatasetsFromAPI();
setStep(s => s + 1);
return;
} else if (step === 6) { // After Compute & Scale step
handleGetFinalRecommendations();
} else if (step === 7) { // After AI Review step
handleGenerateCodeAndBlueprint();
} else {
setStep(s => s + 1);
}
};
const handlePrevStep = () => setStep(s => s - 1);
return (
<div>AIAdvisor Component</div>
);
}
|