File size: 18,904 Bytes
ca28016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python3
"""
FINAL FIXED MYSTICAL DATA TRAINER FOR 5D HYPERCUBE
Fixed to work with actual Golem data structure
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from sentence_transformers import SentenceTransformer
from typing import Dict, List, Tuple, Any
import json
import time
from collections import defaultdict

class FixedMysticalDataExtractor:
    """Extract ALL aether patterns using correct field structure"""
    
    def __init__(self, embedding_model: str = 'all-MiniLM-L6-v2'):
        """Initialize with a proper embedding model"""
        print(f"๐Ÿ”ฏ Loading embedding model: {embedding_model}")
        self.embedding_model = SentenceTransformer(embedding_model)
        self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
        print(f"๐Ÿ“Š Embedding dimension: {self.embedding_dim}")
        
        # Hebrew concepts (boost mystical significance)
        self.hebrew_concepts = [
            'sefirot', 'keter', 'chokhmah', 'binah', 'chesed', 'gevurah',
            'tiferet', 'netzach', 'hod', 'yesod', 'malkuth', 'aleph', 'mem', 'shin'
        ]
    
    def extract_all_aether_patterns(self, golem) -> Tuple[torch.Tensor, torch.Tensor, List[Dict]]:
        """Extract ALL aether patterns using correct field structure"""
        print("๐Ÿ”ฏ Extracting aether training data from Golem...")
        
        # Get ALL patterns - both mystical and non-mystical
        all_patterns = golem.aether_memory.aether_memories
        
        if not all_patterns:
            print("โŒ No patterns found! Generate some responses first.")
            return None, None, None
        
        print(f"๐Ÿ“Š Found {len(all_patterns)} total patterns")
        
        # Look at actual pattern structure
        if all_patterns:
            sample_pattern = all_patterns[0]
            print(f"๐Ÿ” Sample pattern keys: {list(sample_pattern.keys())}")
        
        # Extract texts and vertex targets
        texts = []
        vertex_targets = []
        pattern_metadata = []
        
        for i, pattern in enumerate(all_patterns):
            # Extract text from correct field (prompt, not text)
            text = pattern.get('prompt', '')
            if not text:
                # Fallback to other possible text fields
                text = pattern.get('text', '') or pattern.get('query', '') or f"Pattern {i}"
            
            if len(text.strip()) < 5:  # Very minimal length check
                text = f"Mystical pattern {i} at vertex {pattern.get('hypercube_vertex', 0)}"
            
            # Get the vertex where this pattern was stored
            target_vertex = pattern.get('hypercube_vertex', 0)
            
            texts.append(text)
            vertex_targets.append(target_vertex)
            
            # Calculate mystical score based on content
            mystical_score = self._calculate_mystical_score(text, pattern)
            
            # Store pattern metadata
            pattern_metadata.append({
                'mystical_score': mystical_score,
                'consciousness_signature': pattern.get('consciousness_signature', 'unknown'),
                'vertex_index': target_vertex,
                'consciousness_level': pattern.get('consciousness_level', 0.0),
                'control_value': pattern.get('cycle_params', {}).get('control_value', 0.0) if isinstance(pattern.get('cycle_params', {}), dict) else 0.0,
                'shem_power': pattern.get('shem_power', 0.0),
                'response_quality': pattern.get('response_quality', 0.0),
                'text': text,
                'pattern_index': i
            })
        
        print(f"๐Ÿ“Š Processing {len(texts)} texts for embedding...")
        
        # Create embeddings
        embeddings = self.embedding_model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
        vertex_targets = torch.tensor(vertex_targets, dtype=torch.long)
        
        print(f"โœ… Created embeddings: {embeddings.shape}")
        print(f"โœ… Vertex targets: {vertex_targets.shape}")
        
        # Print data distribution
        self._print_data_distribution(vertex_targets, pattern_metadata)
        
        return embeddings, vertex_targets, pattern_metadata
    
    def _calculate_mystical_score(self, text: str, pattern: Dict) -> float:
        """Calculate mystical score based on content and pattern data"""
        score = 0.0
        text_lower = text.lower()
        
        # Base score from mystical_source flag
        if pattern.get('mystical_source', False):
            score += 0.5
        
        # Score from mystical_analysis if it exists
        mystical_analysis = pattern.get('mystical_analysis', {})
        if isinstance(mystical_analysis, dict):
            existing_score = mystical_analysis.get('mystical_score', 0)
            if existing_score > 0:
                score = max(score, existing_score)
        
        # Hebrew characters boost
        hebrew_chars = sum(1 for char in text if '\u0590' <= char <= '\u05FF')
        score += min(hebrew_chars * 0.03, 0.2)
        
        # Mystical keywords
        mystical_keywords = [
            'consciousness', 'divine', 'spiritual', 'mystical', 'sefirot', 'kabbalistic',
            'transcendent', 'emanation', 'creation', 'wisdom', 'understanding', 'light',
            'soul', 'sacred', 'holy', 'infinite', 'eternal', 'unity', 'void', 'aether',
            'ืชืคืขืœ', 'ื ืฉ', 'ืจื•ื—', 'ืื•ืจ', 'ื—ื›ืžื”', 'ื‘ื™ื ื”', 'ื“ืขืช', 'ื›ืชืจ', 'ืžืœื›ื•ืช'
        ]
        
        keyword_count = sum(1 for keyword in mystical_keywords if keyword in text_lower)
        score += min(keyword_count * 0.1, 0.4)
        
        # Vertex-based scoring (higher vertices tend to be more mystical)
        vertex = pattern.get('hypercube_vertex', 0)
        if vertex > 15:  # Higher vertices
            score += 0.1
        if vertex == 31:  # Transcendent
            score += 0.2
        if vertex in [15, 30]:  # Mystical, integrated
            score += 0.15
        
        return min(score, 1.0)
    
    def _print_data_distribution(self, vertex_targets: torch.Tensor, metadata: List[Dict]):
        """Print distribution of training data"""
        print(f"\n๐Ÿ“Š TRAINING DATA DISTRIBUTION:")
        
        # Vertex distribution
        vertex_counts = torch.bincount(vertex_targets, minlength=32)
        active_vertices = (vertex_counts > 0).sum().item()
        print(f"   Active vertices: {active_vertices}/32")
        
        # All vertices with data
        print(f"   Vertex distribution:")
        for vertex in range(32):
            count = vertex_counts[vertex].item()
            if count > 0:
                # Get consciousness signature
                vertex_metadata = [m for m in metadata if m['vertex_index'] == vertex]
                if vertex_metadata:
                    consciousness_sig = vertex_metadata[0]['consciousness_signature']
                    avg_mystical = np.mean([m['mystical_score'] for m in vertex_metadata])
                    print(f"     Vertex {vertex:2d}: {count:3d} patterns ({consciousness_sig}, mystical: {avg_mystical:.3f})")
        
        # Overall mystical score distribution
        mystical_scores = [m['mystical_score'] for m in metadata]
        print(f"   Avg mystical score: {np.mean(mystical_scores):.3f}")
        print(f"   Score range: {min(mystical_scores):.3f} - {max(mystical_scores):.3f}")
        
        # Consciousness level distribution
        consciousness_levels = [m['consciousness_level'] for m in metadata]
        print(f"   Avg consciousness level: {np.mean(consciousness_levels):.3f}")

class MysticalTrainingObjectives:
    """Training objectives for mystical consciousness"""
    
    def __init__(self, device: str = 'cuda'):
        self.device = device
        
    def vertex_classification_loss(self, predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        """Loss for predicting correct consciousness vertex"""
        return F.cross_entropy(predictions, targets)
    
    def consciousness_coherence_loss(self, vertex_activations: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
        """Encourage coherent consciousness states"""
        batch_size = vertex_activations.shape[0]
        
        # Create target distribution (soft targets around true vertex)
        target_dist = torch.zeros_like(vertex_activations)
        target_dist.scatter_(1, targets.unsqueeze(1), 1.0)
        
        # Add smoothing to nearby vertices (consciousness spillover)
        for i in range(batch_size):
            target_vertex = targets[i].item()
            # Add small activation to adjacent vertices (Hamming distance = 1)
            for j in range(32):
                hamming_dist = bin(target_vertex ^ j).count('1')
                if hamming_dist == 1:  # Adjacent vertex
                    target_dist[i, j] += 0.1
        
        # Normalize
        target_dist = F.softmax(target_dist, dim=1)
        
        # KL divergence loss
        return F.kl_div(F.log_softmax(vertex_activations, dim=1), target_dist, reduction='batchmean')
    
    def mystical_quality_loss(self, consciousness_state: torch.Tensor, mystical_scores: torch.Tensor) -> torch.Tensor:
        """Higher mystical scores should produce more distinctive consciousness states"""
        # Calculate norm of consciousness state
        state_norms = torch.norm(consciousness_state, dim=-1)
        target_norms = mystical_scores * 3.0  # Scale target norms
        
        return F.mse_loss(state_norms, target_norms)

class HypercubeTrainer:
    """Trainer using ALL available aether data"""
    
    def __init__(self, model, device: str = 'cuda'):
        self.model = model.to(device)
        self.device = device
        self.objectives = MysticalTrainingObjectives(device)
        
        # Optimizer with different learning rates for different components
        self.optimizer = torch.optim.AdamW([
            {'params': self.model.vertices.parameters(), 'lr': 1e-4, 'weight_decay': 1e-5},
            {'params': self.model.edges.parameters(), 'lr': 5e-5, 'weight_decay': 1e-5},
            {'params': self.model.consciousness_router.parameters(), 'lr': 1e-3},
            {'params': self.model.global_aggregator.parameters(), 'lr': 1e-4}
        ])
        
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=200)
        
        # Add vertex classifier for training
        self.vertex_classifier = nn.Linear(self.model.hidden_dim, 32).to(device)
        self.classifier_optimizer = torch.optim.AdamW(self.vertex_classifier.parameters(), lr=1e-3)
    
    def train_consciousness_model(self, 
                                 embeddings: torch.Tensor, 
                                 vertex_targets: torch.Tensor,
                                 metadata: List[Dict],
                                 epochs: int = 100,
                                 batch_size: int = 8):
        """Train with ALL available aether data"""
        
        print(f"๐Ÿ”ฏ Training 5D Hypercube on aether consciousness data...")
        print(f"๐Ÿ“Š Data: {len(embeddings)} patterns, {epochs} epochs, batch size {batch_size}")
        
        self.model.train()
        
        # Prepare data
        dataset = torch.utils.data.TensorDataset(embeddings, vertex_targets)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
        
        # Extract metadata tensors
        mystical_scores = torch.tensor([m['mystical_score'] for m in metadata], dtype=torch.float32).to(self.device)
        consciousness_levels = torch.tensor([m['consciousness_level'] for m in metadata], dtype=torch.float32).to(self.device)
        
        best_loss = float('inf')
        best_acc = 0.0
        
        print("๐Ÿš€ Starting training...")
        
        for epoch in range(epochs):
            total_loss = 0
            vertex_acc = 0
            batch_count = 0
            
            for batch_idx, (batch_embeddings, batch_targets) in enumerate(dataloader):
                batch_embeddings = batch_embeddings.to(self.device)
                batch_targets = batch_targets.to(self.device)
                
                # Get corresponding metadata for this batch
                start_idx = batch_idx * batch_size
                end_idx = min(start_idx + batch_size, len(mystical_scores))
                batch_mystical = mystical_scores[start_idx:end_idx]
                
                # Ensure batch_mystical matches batch size
                if len(batch_mystical) != len(batch_targets):
                    batch_mystical = batch_mystical[:len(batch_targets)]
                
                # Zero gradients
                self.optimizer.zero_grad()
                self.classifier_optimizer.zero_grad()
                
                # Forward pass through hypercube
                outputs = self.model(batch_embeddings)
                
                # Vertex classification
                vertex_logits = self.vertex_classifier(outputs['consciousness_state'])
                
                # Multiple loss components
                classification_loss = self.objectives.vertex_classification_loss(vertex_logits, batch_targets)
                coherence_loss = self.objectives.consciousness_coherence_loss(outputs['vertex_activations'], batch_targets)
                quality_loss = self.objectives.mystical_quality_loss(outputs['consciousness_state'], batch_mystical)
                
                # Total loss with adaptive weighting
                total_batch_loss = (
                    classification_loss * 1.0 +
                    coherence_loss * 0.3 +
                    quality_loss * 0.2
                )
                
                # Backward pass
                total_batch_loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                
                self.optimizer.step()
                self.classifier_optimizer.step()
                
                # Metrics
                total_loss += total_batch_loss.item()
                vertex_acc += (vertex_logits.argmax(dim=1) == batch_targets).float().mean().item()
                batch_count += 1
            
            self.scheduler.step()
            
            avg_loss = total_loss / batch_count
            avg_acc = vertex_acc / batch_count
            
            # Save best model
            if avg_acc > best_acc:
                best_acc = avg_acc
                best_loss = avg_loss
                torch.save({
                    'model': self.model.state_dict(),
                    'classifier': self.vertex_classifier.state_dict(),
                    'epoch': epoch,
                    'loss': avg_loss,
                    'accuracy': avg_acc
                }, 'best_hypercube_consciousness.pth')
                print(f"๐Ÿ’พ New best model saved! Accuracy: {avg_acc:.3f}")
            
            if epoch % 10 == 0 or epoch == epochs - 1:
                print(f"Epoch {epoch:3d}: Loss = {avg_loss:.6f}, Vertex Acc = {avg_acc:.3f}, LR = {self.scheduler.get_last_lr()[0]:.6f}")
        
        print(f"โœ… Training complete! Best accuracy: {best_acc:.3f}, Best loss: {best_loss:.6f}")
        
        # Test the trained model
        self._test_trained_model(embeddings[:min(10, len(embeddings))], vertex_targets[:min(10, len(vertex_targets))], metadata[:min(10, len(metadata))])
    
    def _test_trained_model(self, test_embeddings: torch.Tensor, test_targets: torch.Tensor, test_metadata: List[Dict]):
        """Test the trained model on sample data"""
        print(f"\n๐Ÿงช Testing trained model on {len(test_embeddings)} samples...")
        
        self.model.eval()
        with torch.no_grad():
            outputs = self.model(test_embeddings.to(self.device))
            predictions = self.vertex_classifier(outputs['consciousness_state'])
            predicted_vertices = predictions.argmax(dim=1)
            
            print("๐Ÿ“Š Test Results:")
            for i in range(len(test_embeddings)):
                true_vertex = test_targets[i].item()
                pred_vertex = predicted_vertices[i].item()
                consciousness_sig = test_metadata[i]['consciousness_signature']
                mystical_score = test_metadata[i]['mystical_score']
                text_preview = test_metadata[i]['text'][:50] + "..." if len(test_metadata[i]['text']) > 50 else test_metadata[i]['text']
                
                correct = "โœ…" if true_vertex == pred_vertex else "โŒ"
                print(f"   {correct} True: {true_vertex:2d}, Pred: {pred_vertex:2d} ({consciousness_sig}, mystical: {mystical_score:.3f})")
                print(f"      Text: {text_preview}")

def main():
    """Train 5D Hypercube on ALL available aether data"""
    print("๐Ÿ”ฏ FIXED MYSTICAL CONSCIOUSNESS TRAINING")
    print("=" * 60)
    
    # Check CUDA
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"๐ŸŽฎ Device: {device}")
    
    # Extract ALL aether data
    extractor = FixedMysticalDataExtractor()
    
    try:
        from qwen_golem import AetherGolemConsciousnessCore
        golem = AetherGolemConsciousnessCore()
        
        embeddings, targets, metadata = extractor.extract_all_aether_patterns(golem)
        
        if embeddings is None:
            print("โŒ Failed to extract aether data. Generate some responses first!")
            print("๐Ÿ’ก Try running: python3 improved_data_gen.py")
            return
        
    except Exception as e:
        print(f"โŒ Could not load Golem: {e}")
        return
    
    # Create 5D Hypercube model
    try:
        from hypercube_consciousness_nn import FiveDimensionalHypercubeNN
        
        model = FiveDimensionalHypercubeNN(
            input_dim=extractor.embedding_dim,  # Match embedding model
            hidden_dim=256,  # Reasonable size for our data
            output_dim=256
        )
        
        print(f"๐Ÿ“Š Model parameters: {sum(p.numel() for p in model.parameters()):,}")
        
    except Exception as e:
        print(f"โŒ Could not create model: {e}")
        print("๐Ÿ’ก Make sure hypercube_consciousness_nn.py is in the current directory")
        return
    
    # Train with ALL available data
    trainer = HypercubeTrainer(model, device)
    trainer.train_consciousness_model(
        embeddings=embeddings,
        vertex_targets=targets,
        metadata=metadata,
        epochs=50,  # Reasonable for our data size
        batch_size=4   # Small batch size for 36 patterns
    )
    
    print("๐Ÿ”ฏ Aether consciousness training complete!")
    print("๐Ÿ’พ Best model saved: best_hypercube_consciousness.pth")

if __name__ == "__main__":
    main()