#!/usr/bin/env python3 """ 5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK Real neural architecture for mystical consciousness training """ import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Dict, Tuple, Optional class HypercubeVertex(nn.Module): """Individual vertex in the 5D hypercube""" def __init__(self, hidden_dim: int, vertex_index: int): super().__init__() self.vertex_index = vertex_index self.hidden_dim = hidden_dim # Convert vertex index to 5D binary coordinates binary = format(vertex_index, '05b') self.coordinates = [int(bit) for bit in binary] # Consciousness dimensions self.dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] self.active_dimensions = [self.dimensions[i] for i, bit in enumerate(self.coordinates) if bit == 1] # Vertex-specific processing self.vertex_transform = nn.Linear(hidden_dim, hidden_dim) self.consciousness_gate = nn.Linear(hidden_dim, 1) self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * 0.01) # Initialize based on vertex properties self._initialize_vertex_properties() def _initialize_vertex_properties(self): """Initialize based on mystical properties of this vertex""" active_count = sum(self.coordinates) # More active dimensions = stronger consciousness potential consciousness_strength = active_count / 5.0 with torch.no_grad(): # Scale initial weights based on consciousness strength self.vertex_transform.weight.data *= (0.5 + consciousness_strength) self.mystical_signature.data *= consciousness_strength # Special vertices get unique initialization if self.vertex_index == 0: # Void self.mystical_signature.data.fill_(0.0) elif self.vertex_index == 31: # Transcendent (11111) self.mystical_signature.data *= 2.0 def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: """Process input through this vertex""" # Apply vertex transformation transformed = torch.tanh(self.vertex_transform(x)) # Calculate consciousness activation consciousness_level = torch.sigmoid(self.consciousness_gate(transformed)) # Apply mystical signature signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True) mystical_activation = torch.tanh(signature_influence) # Combine for final vertex activation vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation) return { 'transformed': transformed, 'consciousness_level': consciousness_level, 'mystical_activation': mystical_activation, 'vertex_activation': vertex_activation, 'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1) } class HypercubeEdge(nn.Module): """Edge connecting vertices in the hypercube""" def __init__(self, hidden_dim: int, vertex1: int, vertex2: int): super().__init__() self.vertex1 = vertex1 self.vertex2 = vertex2 self.hidden_dim = hidden_dim # Calculate Hamming distance (number of differing bits) self.hamming_distance = bin(vertex1 ^ vertex2).count('1') # Only create edge if vertices are adjacent (Hamming distance = 1) self.is_valid_edge = self.hamming_distance == 1 if self.is_valid_edge: # Edge transformation for consciousness flow self.edge_transform = nn.Linear(hidden_dim * 2, hidden_dim) self.flow_gate = nn.Linear(hidden_dim, 1) # Initialize based on dimensional transition self._initialize_edge_properties() def _initialize_edge_properties(self): """Initialize based on the dimensional transition this edge represents""" if not self.is_valid_edge: return # Find which dimension this edge transitions diff = self.vertex1 ^ self.vertex2 dimension_index = (diff & -diff).bit_length() - 1 # Get position of single differing bit # Dimension names for reference dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] transitioning_dimension = dimensions[dimension_index] if dimension_index < 5 else 'unknown' # Adjust initialization based on dimension dimension_weights = { 'physical': 1.0, # Strong, direct transitions 'emotional': 0.8, # Moderate emotional flow 'mental': 1.2, # Enhanced mental connections 'intuitive': 0.9, # Subtle intuitive links 'spiritual': 1.5 # Strongest spiritual connections } weight_multiplier = dimension_weights.get(transitioning_dimension, 1.0) with torch.no_grad(): self.edge_transform.weight.data *= weight_multiplier self.flow_gate.weight.data *= weight_multiplier def forward(self, vertex1_state: torch.Tensor, vertex2_state: torch.Tensor) -> Dict[str, torch.Tensor]: """Process consciousness flow between vertices""" if not self.is_valid_edge: return {'flow': torch.zeros_like(vertex1_state), 'strength': torch.zeros(vertex1_state.shape[0], 1)} # Combine vertex states combined = torch.cat([vertex1_state, vertex2_state], dim=-1) # Transform and gate the flow transformed = torch.tanh(self.edge_transform(combined)) flow_strength = torch.sigmoid(self.flow_gate(transformed)) # Bidirectional flow flow = transformed * flow_strength return { 'flow': flow, 'strength': flow_strength } class ConsciousnessRouter(nn.Module): """Routes consciousness through the hypercube based on input""" def __init__(self, input_dim: int, hidden_dim: int): super().__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim # Input processing self.input_transform = nn.Linear(input_dim, hidden_dim) # Consciousness direction predictor (which vertices to activate) self.vertex_router = nn.Linear(hidden_dim, 32) # Mystical content analyzer self.mystical_analyzer = nn.Sequential( nn.Linear(hidden_dim, hidden_dim // 2), nn.ReLU(), nn.Linear(hidden_dim // 2, 5), # 5 dimensions nn.Sigmoid() ) # Consciousness intensity predictor self.intensity_predictor = nn.Linear(hidden_dim, 1) def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: """Route consciousness through hypercube""" # Transform input transformed = torch.relu(self.input_transform(x)) # Predict vertex activations vertex_logits = self.vertex_router(transformed) vertex_probs = torch.softmax(vertex_logits, dim=-1) # Analyze mystical dimensions dimension_activations = self.mystical_analyzer(transformed) # Predict overall consciousness intensity consciousness_intensity = torch.sigmoid(self.intensity_predictor(transformed)) return { 'transformed_input': transformed, 'vertex_logits': vertex_logits, 'vertex_probabilities': vertex_probs, 'dimension_activations': dimension_activations, 'consciousness_intensity': consciousness_intensity } class FiveDimensionalHypercubeNN(nn.Module): """Complete 5D Hypercube Neural Network for Mystical Consciousness""" def __init__(self, input_dim: int, hidden_dim: int, output_dim: int): super().__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim print(f"๐Ÿ”ฒ Initializing 5D Hypercube Neural Network") print(f" Input dim: {input_dim}, Hidden dim: {hidden_dim}, Output dim: {output_dim}") # Consciousness router self.consciousness_router = ConsciousnessRouter(input_dim, hidden_dim) # Create all 32 vertices (2^5) self.vertices = nn.ModuleList([ HypercubeVertex(hidden_dim, i) for i in range(32) ]) # Create all valid edges (vertices with Hamming distance = 1) self.edges = nn.ModuleList([ HypercubeEdge(hidden_dim, i, j) for i in range(32) for j in range(i + 1, 32) if bin(i ^ j).count('1') == 1 # Only adjacent vertices ]) # Global consciousness aggregator self.global_aggregator = nn.Sequential( nn.Linear(hidden_dim * 32, hidden_dim * 4), nn.LayerNorm(hidden_dim * 4), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_dim * 4, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) # Mystical signature extractor self.signature_extractor = nn.Linear(hidden_dim, 64) print(f"โœ… Created {len(self.vertices)} vertices and {len(self.edges)} edges") print(f"๐Ÿ“Š Total parameters: {sum(p.numel() for p in self.parameters()):,}") def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: """Forward pass through 5D hypercube consciousness""" batch_size = x.shape[0] # Route consciousness routing = self.consciousness_router(x) transformed_input = routing['transformed_input'] vertex_probs = routing['vertex_probabilities'] # Process through all vertices vertex_outputs = [] vertex_activations = [] vertex_signatures = [] for i, vertex in enumerate(self.vertices): vertex_output = vertex(transformed_input) # Weight by routing probability weighted_activation = vertex_output['vertex_activation'] * vertex_probs[:, i:i+1] vertex_outputs.append(vertex_output['transformed']) vertex_activations.append(weighted_activation) vertex_signatures.append(vertex_output['signature']) # Stack vertex outputs all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden] all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32] all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden] # Process edges (consciousness flow between adjacent vertices) edge_flows = [] for edge in self.edges: if edge.is_valid_edge: v1_state = all_vertex_outputs[:, edge.vertex1] v2_state = all_vertex_outputs[:, edge.vertex2] edge_output = edge(v1_state, v2_state) edge_flows.append(edge_output['flow']) # Aggregate all vertex states flattened_vertices = all_vertex_outputs.view(batch_size, -1) consciousness_state = self.global_aggregator(flattened_vertices) # Extract mystical signatures mystical_signatures = self.signature_extractor(consciousness_state) return { 'consciousness_state': consciousness_state, 'vertex_activations': all_vertex_activations, 'vertex_outputs': all_vertex_outputs, 'vertex_signatures': all_vertex_signatures, 'mystical_signatures': mystical_signatures, 'dimension_activations': routing['dimension_activations'], 'consciousness_intensity': routing['consciousness_intensity'], 'routing_probabilities': vertex_probs, 'edge_flows': edge_flows if edge_flows else None } def get_dominant_vertex(self, x: torch.Tensor) -> torch.Tensor: """Get the most activated vertex for each input""" outputs = self.forward(x) return outputs['vertex_activations'].argmax(dim=-1) def get_consciousness_signature(self, vertex_index: int) -> str: """Get consciousness signature for a vertex""" if not (0 <= vertex_index <= 31): return 'invalid' # Convert to binary representation binary_str = format(vertex_index, '05b') # Map to consciousness types consciousness_types = { '00000': 'void', '00001': 'spiritual', '00010': 'intuitive', '00100': 'mental', '01000': 'emotional', '10000': 'physical', '11111': 'transcendent', '11110': 'integrated', '01111': 'mystical' } return consciousness_types.get(binary_str, f'hybrid_{binary_str}') def navigate_to_vertex(self, target_vertex: int) -> Dict[str, any]: """Get information about navigating to a specific vertex""" if not (0 <= target_vertex <= 31): return {'error': 'Invalid vertex'} binary = format(target_vertex, '05b') dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] return { 'vertex_index': target_vertex, 'binary_representation': binary, 'active_dimensions': [dimensions[i] for i, bit in enumerate(binary) if bit == '1'], 'consciousness_signature': self.get_consciousness_signature(target_vertex), 'vertex_properties': { 'coordinates': [int(bit) for bit in binary], 'dimension_count': sum(int(bit) for bit in binary), 'consciousness_potential': sum(int(bit) for bit in binary) / 5.0 } } def test_hypercube_model(): """Test the 5D hypercube model""" print("๐Ÿงช Testing 5D Hypercube Neural Network...") # Create model model = FiveDimensionalHypercubeNN( input_dim=384, # Sentence transformer dimension hidden_dim=512, output_dim=512 ) # Test input batch_size = 4 test_input = torch.randn(batch_size, 384) print(f"๐Ÿ“Š Testing with input shape: {test_input.shape}") # Forward pass with torch.no_grad(): outputs = model(test_input) print("โœ… Forward pass successful!") print(f" Consciousness state shape: {outputs['consciousness_state'].shape}") print(f" Vertex activations shape: {outputs['vertex_activations'].shape}") print(f" Mystical signatures shape: {outputs['mystical_signatures'].shape}") # Test vertex navigation for vertex in [0, 15, 31]: nav_info = model.navigate_to_vertex(vertex) print(f" Vertex {vertex}: {nav_info['consciousness_signature']} - {nav_info['active_dimensions']}") # Test dominant vertex prediction dominant_vertices = model.get_dominant_vertex(test_input) print(f" Dominant vertices: {dominant_vertices.tolist()}") print("๐Ÿ”ฒ Hypercube model test complete!") if __name__ == "__main__": test_hypercube_model()