Spaces:
Sleeping
Sleeping
File size: 5,701 Bytes
e7bb669 f7ac86a e7bb669 6e3d1dc e7bb669 f9a7536 f7ac86a f9a7536 e7bb669 f7ac86a f9b7da1 e7bb669 f9b7da1 e7bb669 a25ba7b e7bb669 f9b7da1 e7bb669 f7ac86a 6e3d1dc f7ac86a e7bb669 6e3d1dc f7ac86a 6e3d1dc e7bb669 f7ac86a f55e107 f7ac86a e7bb669 6e3d1dc e7bb669 f7ac86a e7bb669 f7ac86a e7bb669 f7ac86a e7bb669 f7ac86a e7bb669 6e3d1dc f7ac86a e7bb669 f9a7536 e7bb669 f7ac86a e7bb669 f9a7536 e7bb669 f7ac86a e7bb669 f7ac86a e7bb669 f7ac86a e7bb669 f7ac86a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import re
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from common import (
read_json_stdin,
write_json_stdout,
current_month_snapshot,
clean_ru,
)
ALLOWED_MODEL_ID = "google/gemma-3-1b-it"
os.environ.setdefault("OMP_NUM_THREADS", "1")
os.environ.setdefault("MKL_NUM_THREADS", "1")
try:
torch.set_num_threads(1)
except Exception:
pass
_DEVICE = torch.device("cpu")
_tokenizer = None
_model = None
_loaded = False
def _get_hf_token() -> str:
for name in ("HF_TOKEN", "token", "HF_HUB_TOKEN"):
val = os.getenv(name)
if val:
return val
raise RuntimeError(
"HF token not found in env. "
"Set HF_TOKEN (или token / HF_HUB_TOKEN) в секретах Space."
)
def _load():
global _tokenizer, _model, _loaded
if _loaded and _tokenizer is not None and _model is not None:
return _tokenizer, _model
hf_token = _get_hf_token()
_tokenizer = AutoTokenizer.from_pretrained(
ALLOWED_MODEL_ID,
token=hf_token,
trust_remote_code=True,
)
_model = AutoModelForCausalLM.from_pretrained(
ALLOWED_MODEL_ID,
token=hf_token,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True,
).to(_DEVICE).eval()
if _tokenizer.pad_token_id is None:
_tokenizer.pad_token_id = _tokenizer.eos_token_id
_loaded = True
return _tokenizer, _model
def _gen(messages, tok, mdl, max_new_tokens=200, det=True):
inputs = tok.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(_DEVICE)
with torch.no_grad():
common = dict(
max_new_tokens=max_new_tokens,
repetition_penalty=1.08 if det else 1.12,
no_repeat_ngram_size=5 if det else 6,
eos_token_id=tok.eos_token_id,
pad_token_id=tok.pad_token_id,
)
if det:
out = mdl.generate(
**inputs,
do_sample=False,
num_beams=4,
**common,
)
else:
out = mdl.generate(
**inputs,
do_sample=True,
temperature=0.8,
**common,
)
gen_ids = out[0, inputs["input_ids"].shape[-1] :]
return tok.decode(gen_ids, skip_special_tokens=True)
_BULLET_KILL = re.compile(
r"(?i)(учитывай данные|данные пользователя|месяц:|доход:|расход:|нетто:|топ стат|вопрос:|assistant)"
)
_ONLY_PUNCT = re.compile(r"^[-•\s\.\,\;\:\!\?]+$")
def _to_bullets(text: str) -> str:
if not text:
return ""
m = re.search(r"(\n\s*[-*]\s+|\n\s*\d+[\).\s]+|•)", "\n" + text)
if m:
text = text[m.start() :]
text = re.sub(r"^\s*[*•]\s+", "- ", text, flags=re.M)
text = re.sub(r"^\s*\d+[\).\s]+", "- ", text, flags=re.M)
uniq, seen = [], set()
for ln in text.split("\n"):
s = ln.strip()
if not s or not s.startswith("- "):
continue
if _BULLET_KILL.search(s) or _ONLY_PUNCT.match(s):
continue
s = re.sub(r"\s{2,}", " ", s)
s = re.sub(r"\.\s*\.+$", ".", s)
key = s.lower()
if key in seen:
continue
seen.add(key)
uniq.append(s)
if len(uniq) >= 7:
break
return "\n".join(s.replace("- ", "• ", 1) for s in uniq)
def main():
req = read_json_stdin()
tx = req.get("transactions") or []
question = (req.get("question") or "").strip()
df = pd.DataFrame(tx) if tx else None
snap = current_month_snapshot(df) if df is not None and not df.empty else {}
if snap:
ctx_lines = [
f"Месяц: {snap['month']}",
f"Доход: {snap['income_total']:.0f}",
f"Расход: {abs(snap['expense_total']):.0f}",
f"Нетто: {snap['net']:.0f}",
]
if snap.get("top_expense_categories"):
ctx_lines.append("Топ статей расходов:")
for cat, val in snap["top_expense_categories"]:
ctx_lines.append(f"- {cat}: {abs(val):.0f}")
context = "\n".join(ctx_lines)
else:
context = "Данных за текущий месяц нет."
system_msg = (
"Ты финансовый помощник. Отвечай по-русски. "
"Верни ТОЛЬКО список из 5–7 конкретных шагов экономии с цифрами "
"(лимиты, проценты, частота). "
"Каждая строка должна начинаться с символов \"- \". Никаких вступлений."
)
messages = [
{"role": "system", "content": system_msg},
{
"role": "user",
"content": (
f"Мои данные за текущий месяц:\n{context}\n\nВопрос: {question}\n"
"Начни ответ сразу со строки, которая начинается с \"- \". Верни только список."
),
},
]
tok, mdl = _load()
raw = _gen(messages, tok, mdl, det=True)
text = _to_bullets(clean_ru(raw))
if text.count("\n") + 1 < 3:
raw2 = _gen(messages, tok, mdl, det=False)
text2 = _to_bullets(clean_ru(raw2))
if text2:
text = text2
write_json_stdout({"advice": text})
if __name__ == "__main__":
main()
|