finwise-ml / common.py
Maria Loskutova
Add
e7bb669
raw
history blame
7.08 kB
import re
import json
import numpy as np
import pandas as pd
from typing import Optional, Tuple
from statsmodels.tsa.holtwinters import ExponentialSmoothing, Holt
try:
from prophet import Prophet
_HAS_PROPHET = True
except Exception:
_HAS_PROPHET = False
_KEEP = re.compile(r"[^А-Яа-яЁё0-9 ,.!?:;()«»\"'–—\-•\n]")
def clean_ru(text: str) -> str:
text = _KEEP.sub(" ", text or "")
return re.sub(r"\s+", " ", text).strip()
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
work = df.copy()
for col in list(work.columns):
lc = col.lower()
if lc in ("date", "дата"):
work.rename(columns={col: "date"}, inplace=True)
elif lc in ("amount", "сумма"):
work.rename(columns={col: "amount"}, inplace=True)
elif lc in ("category", "категория"):
work.rename(columns={col: "category"}, inplace=True)
elif lc in ("type", "тип"):
work.rename(columns={col: "type"}, inplace=True)
required = {"date", "amount", "type"}
missing = required - set(map(str, work.columns))
if missing:
raise ValueError(f"Отсутствуют колонки: {', '.join(sorted(missing))}")
work["date"] = pd.to_datetime(work["date"], errors="coerce")
work = work.dropna(subset=["date"])
work["amount"] = pd.to_numeric(work["amount"], errors="coerce").fillna(0.0)
if "category" not in work.columns:
work["category"] = "Без категории"
return work
def is_expense(t: str) -> bool:
t = str(t).strip().lower()
return t in {"expense", "расход", "расходы", "-", "e", "exp"}
def is_income(t: str) -> bool:
t = str(t).strip().lower()
return t in {"income", "доход", "+", "i", "inc"}
def prepare_components_series(df: pd.DataFrame, freq: str="M") -> Tuple[pd.Series, pd.Series, pd.Series]:
if df is None or df.empty:
raise ValueError("Пустая таблица транзакций.")
work = normalize_columns(df)
work["is_expense"] = work["type"].apply(is_expense)
work["is_income"] = work["type"].apply(is_income)
inc = work.loc[work["is_income"]].set_index("date")["amount"].resample(freq).sum().sort_index()
exp = work.loc[work["is_expense"]].set_index("date")["amount"].abs().mul(-1).resample(freq).sum().sort_index()
if not inc.empty or not exp.empty:
start = min([x.index.min() for x in [inc, exp] if not x.empty])
end = max([x.index.max() for x in [inc, exp] if not x.empty])
full_idx = pd.date_range(start, end, freq=freq)
inc = inc.reindex(full_idx, fill_value=0.0)
exp = exp.reindex(full_idx, fill_value=0.0)
net = inc + exp
inc.index.name = exp.index.name = net.index.name = "period_end"
return inc, exp, net
def fit_and_forecast(history: pd.Series, steps: int, freq: str, method: str = "auto") -> pd.Series:
if len(history) < 3:
last = float(history.iloc[-1]) if len(history) else 0.0
start = (history.index[-1] if len(history) else pd.Timestamp.today().normalize()) + \
pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
return pd.Series([last] * steps, index=idx, name="forecast")
use_prophet = False
if method == "prophet":
use_prophet = True
elif method == "auto":
if freq.startswith("A"):
use_prophet = _HAS_PROPHET and (len(history) >= 5)
else:
use_prophet = _HAS_PROPHET and (len(history) >= 18)
if use_prophet:
try:
pfreq = "Y" if freq.startswith("A") else "M"
dfp = history.reset_index()
dfp.columns = ["ds", "y"]
m = Prophet(
yearly_seasonality=(pfreq == "M"),
weekly_seasonality=False,
daily_seasonality=False,
seasonality_mode="additive",
)
m.fit(dfp)
future = m.make_future_dataframe(periods=steps, freq=pfreq)
fcst = m.predict(future).tail(steps)
yhat = pd.Series(fcst["yhat"].values, index=pd.DatetimeIndex(fcst["ds"]), name="forecast")
if pfreq == "M":
yhat.index = yhat.index.to_period("M").to_timestamp(how="end")
else:
yhat.index = yhat.index.to_period("Y").to_timestamp(how="end")
if yhat.index.freq is None:
yhat.index = pd.date_range(yhat.index[0], periods=len(yhat), freq=("A-DEC" if pfreq == "Y" else "M"))
return yhat
except Exception:
pass
try:
if freq.startswith("A"):
model = Holt(history, initialization_method="estimated")
else:
if len(history) >= 24:
model = ExponentialSmoothing(
history, trend="add", seasonal="add", seasonal_periods=12,
initialization_method="estimated"
)
else:
model = Holt(history, initialization_method="estimated")
fit = model.fit(optimized=True)
fc = fit.forecast(steps)
if not isinstance(fc.index, pd.DatetimeIndex) or len(fc.index) != steps:
start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
fc = pd.Series(np.asarray(fc), index=idx, name="forecast")
return fc
except Exception:
tail = min(6, len(history))
baseline = float(history.tail(tail).mean()) if tail else 0.0
start = history.index[-1] + pd.tseries.frequencies.to_offset(freq)
idx = pd.date_range(start, periods=steps, freq=freq)
return pd.Series([baseline] * steps, index=idx, name="forecast")
def current_month_snapshot(df: pd.DataFrame) -> dict:
if df is None or df.empty:
return {}
w = normalize_columns(df)
w["is_income"] = w["type"].apply(is_income)
w["is_expense"] = w["type"].apply(is_expense)
lastp = w["date"].dt.to_period("M").max()
cur = w[w["date"].dt.to_period("M") == lastp].copy()
if cur.empty:
return {}
income_total = float(cur.loc[cur["is_income"], "amount"].sum())
expense_total = -float(cur.loc[cur["is_expense"], "amount"].abs().sum())
net = income_total + expense_total
exp_df = cur.loc[cur["is_expense"], ["category","amount"]].copy()
exp_df["amount"] = -exp_df["amount"].abs()
top = exp_df.groupby("category")["amount"].sum().sort_values().head(5)
return {
"month": str(lastp),
"income_total": income_total,
"expense_total": expense_total,
"net": net,
"top_expense_categories": [(str(k), float(v)) for k,v in top.items()]
}
def read_json_stdin() -> dict:
import sys
raw = sys.stdin.read()
return json.loads(raw or "{}")
def write_json_stdout(obj) -> None:
import sys
sys.stdout.write(json.dumps(obj, ensure_ascii=False))
sys.stdout.flush()