| import re | |
| import gradio as gr | |
| from llama_cpp import Llama | |
| model = "unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF" | |
| llm = Llama.from_pretrained( | |
| repo_id=model, | |
| filename="*Q4_K_M.gguf", | |
| verbose=True, | |
| use_mmap=True, | |
| use_mlock=True, | |
| n_threads=4, | |
| n_threads_batch=4, | |
| n_ctx=8000, | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| if len(system_message) > 0: | |
| messages = [{"role": "system", "content": system_message}] | |
| else: | |
| messages = [] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| completion = llm.create_chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p | |
| ) | |
| for message in completion: | |
| delta = message['choices'][0]['delta'] | |
| if 'content' in delta: | |
| response += delta['content'] | |
| formatted_response = re.sub(r"<think>\s*(.*?)\s*</think>", r"*\1*", response, flags=re.DOTALL) | |
| yield formatted_response | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="", | |
| label="System message", | |
| ), | |
| gr.Slider(minimum=200, maximum=100000, value=4000, step=100, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| description=model, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |