Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
import gc
|
| 3 |
-
import torch
|
| 4 |
import cv2
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
|
@@ -10,62 +9,17 @@ import subprocess
|
|
| 10 |
import sys
|
| 11 |
import spaces
|
| 12 |
|
| 13 |
-
from video_depth_anything.video_depth import VideoDepthAnything
|
| 14 |
from utils.dc_utils import read_video_frames, save_video
|
| 15 |
-
from huggingface_hub import hf_hub_download
|
| 16 |
|
| 17 |
-
|
| 18 |
-
# Each example now contains 8 parameters:
|
| 19 |
-
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
|
| 20 |
-
examples = [
|
| 21 |
-
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 22 |
-
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 23 |
-
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 24 |
-
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 25 |
-
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 26 |
-
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 27 |
-
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 28 |
-
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 29 |
-
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 30 |
-
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 31 |
-
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 32 |
-
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 33 |
-
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
|
| 34 |
-
]
|
| 35 |
-
|
| 36 |
-
# Use GPU if available; otherwise, use CPU.
|
| 37 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 38 |
-
|
| 39 |
-
# Model configuration for different encoder variants.
|
| 40 |
-
model_configs = {
|
| 41 |
-
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 42 |
-
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 43 |
-
}
|
| 44 |
-
encoder2name = {
|
| 45 |
-
'vits': 'Small',
|
| 46 |
-
'vitl': 'Large',
|
| 47 |
-
}
|
| 48 |
-
encoder = 'vitl'
|
| 49 |
-
model_name = encoder2name[encoder]
|
| 50 |
-
|
| 51 |
-
# Initialize the model.
|
| 52 |
-
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
|
| 53 |
-
filepath = hf_hub_download(
|
| 54 |
-
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
|
| 55 |
-
filename=f"video_depth_anything_{encoder}.pth",
|
| 56 |
-
repo_type="model"
|
| 57 |
-
)
|
| 58 |
-
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
|
| 59 |
-
video_depth_anything = video_depth_anything.to(DEVICE).eval()
|
| 60 |
-
|
| 61 |
-
title = "# Video Depth Anything + RGBD sbs output"
|
| 62 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
| 63 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
| 64 |
|
| 65 |
@spaces.GPU(enable_queue=True)
|
| 66 |
|
| 67 |
-
def
|
| 68 |
-
|
|
|
|
| 69 |
max_len: int = -1,
|
| 70 |
target_fps: int = -1,
|
| 71 |
max_res: int = 1280,
|
|
@@ -77,24 +31,18 @@ def infer_video_depth(
|
|
| 77 |
input_size: int = 518,
|
| 78 |
):
|
| 79 |
# 1. Read input video frames for inference (downscaled to max_res).
|
| 80 |
-
frames, target_fps = read_video_frames(
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
video_name = os.path.basename(input_video)
|
| 85 |
if not os.path.exists(output_dir):
|
| 86 |
os.makedirs(output_dir)
|
| 87 |
-
|
| 88 |
-
# Save the preprocessed (RGB) video and the generated depth visualization.
|
| 89 |
-
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
| 90 |
-
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
| 91 |
-
save_video(frames, processed_video_path, fps=fps)
|
| 92 |
-
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
|
| 93 |
-
|
| 94 |
stitched_video_path = None
|
| 95 |
if stitch:
|
| 96 |
# For stitching: read the original video in full resolution (without downscaling).
|
| 97 |
-
full_frames, _ = read_video_frames(
|
|
|
|
|
|
|
| 98 |
# For each frame, create a visual depth image from the inferenced depths.
|
| 99 |
d_min, d_max = depths.min(), depths.max()
|
| 100 |
stitched_frames = []
|
|
@@ -134,7 +82,7 @@ def infer_video_depth(
|
|
| 134 |
base_name = os.path.splitext(video_name)[0]
|
| 135 |
short_name = base_name[:20]
|
| 136 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
| 137 |
-
save_video(stitched_frames, stitched_video_path, fps=
|
| 138 |
|
| 139 |
# Merge audio from the input video into the stitched video using ffmpeg.
|
| 140 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
|
@@ -142,7 +90,7 @@ def infer_video_depth(
|
|
| 142 |
"ffmpeg",
|
| 143 |
"-y",
|
| 144 |
"-i", stitched_video_path,
|
| 145 |
-
"-i",
|
| 146 |
"-c:v", "copy",
|
| 147 |
"-c:a", "aac",
|
| 148 |
"-map", "0:v:0",
|
|
@@ -154,10 +102,9 @@ def infer_video_depth(
|
|
| 154 |
os.replace(temp_audio_path, stitched_video_path)
|
| 155 |
|
| 156 |
gc.collect()
|
| 157 |
-
torch.cuda.empty_cache()
|
| 158 |
|
| 159 |
-
# Return
|
| 160 |
-
return [
|
| 161 |
|
| 162 |
def construct_demo():
|
| 163 |
with gr.Blocks(analytics_enabled=False) as demo:
|
|
@@ -168,11 +115,10 @@ def construct_demo():
|
|
| 168 |
with gr.Row(equal_height=True):
|
| 169 |
with gr.Column(scale=1):
|
| 170 |
# Video input component for file upload.
|
| 171 |
-
|
|
|
|
| 172 |
with gr.Column(scale=2):
|
| 173 |
with gr.Row(equal_height=True):
|
| 174 |
-
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
|
| 175 |
-
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
|
| 176 |
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
|
| 177 |
|
| 178 |
with gr.Row(equal_height=True):
|
|
@@ -189,19 +135,10 @@ def construct_demo():
|
|
| 189 |
with gr.Column(scale=2):
|
| 190 |
pass
|
| 191 |
|
| 192 |
-
gr.Examples(
|
| 193 |
-
examples=examples,
|
| 194 |
-
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
|
| 195 |
-
outputs=[processed_video, depth_vis_video, stitched_video],
|
| 196 |
-
fn=infer_video_depth,
|
| 197 |
-
cache_examples=False,
|
| 198 |
-
cache_mode="lazy",
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
generate_btn.click(
|
| 202 |
-
fn=
|
| 203 |
-
inputs=[
|
| 204 |
-
outputs=[
|
| 205 |
)
|
| 206 |
|
| 207 |
return demo
|
|
|
|
| 1 |
import os
|
| 2 |
import gc
|
|
|
|
| 3 |
import cv2
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
|
|
|
| 9 |
import sys
|
| 10 |
import spaces
|
| 11 |
|
|
|
|
| 12 |
from utils.dc_utils import read_video_frames, save_video
|
|
|
|
| 13 |
|
| 14 |
+
title = "#RGBD sbs output"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
| 16 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
| 17 |
|
| 18 |
@spaces.GPU(enable_queue=True)
|
| 19 |
|
| 20 |
+
def stitch_rgbd_videos(
|
| 21 |
+
processed_video: str,
|
| 22 |
+
depth_vis_video: str,
|
| 23 |
max_len: int = -1,
|
| 24 |
target_fps: int = -1,
|
| 25 |
max_res: int = 1280,
|
|
|
|
| 31 |
input_size: int = 518,
|
| 32 |
):
|
| 33 |
# 1. Read input video frames for inference (downscaled to max_res).
|
| 34 |
+
frames, target_fps = read_video_frames(processed_video, max_len, target_fps, max_res)
|
| 35 |
+
|
| 36 |
+
video_name = os.path.basename(processed_video)
|
|
|
|
|
|
|
| 37 |
if not os.path.exists(output_dir):
|
| 38 |
os.makedirs(output_dir)
|
| 39 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
stitched_video_path = None
|
| 41 |
if stitch:
|
| 42 |
# For stitching: read the original video in full resolution (without downscaling).
|
| 43 |
+
full_frames, _ = read_video_frames(processed_video, max_len, target_fps, max_res=-1)
|
| 44 |
+
depths, _ = read_video_frames(depth_vis_video, max_len, target_fps, max_res=-1)
|
| 45 |
+
|
| 46 |
# For each frame, create a visual depth image from the inferenced depths.
|
| 47 |
d_min, d_max = depths.min(), depths.max()
|
| 48 |
stitched_frames = []
|
|
|
|
| 82 |
base_name = os.path.splitext(video_name)[0]
|
| 83 |
short_name = base_name[:20]
|
| 84 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
| 85 |
+
save_video(stitched_frames, stitched_video_path, fps=target_fps)
|
| 86 |
|
| 87 |
# Merge audio from the input video into the stitched video using ffmpeg.
|
| 88 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
|
|
|
| 90 |
"ffmpeg",
|
| 91 |
"-y",
|
| 92 |
"-i", stitched_video_path,
|
| 93 |
+
"-i", processed_video,
|
| 94 |
"-c:v", "copy",
|
| 95 |
"-c:a", "aac",
|
| 96 |
"-map", "0:v:0",
|
|
|
|
| 102 |
os.replace(temp_audio_path, stitched_video_path)
|
| 103 |
|
| 104 |
gc.collect()
|
|
|
|
| 105 |
|
| 106 |
+
# Return stitched video.
|
| 107 |
+
return [stitched_video_path]
|
| 108 |
|
| 109 |
def construct_demo():
|
| 110 |
with gr.Blocks(analytics_enabled=False) as demo:
|
|
|
|
| 115 |
with gr.Row(equal_height=True):
|
| 116 |
with gr.Column(scale=1):
|
| 117 |
# Video input component for file upload.
|
| 118 |
+
processed_video = gr.Video(label="Input Video")
|
| 119 |
+
depth_vis_video = gr.Video(label="Generated Depth Video")
|
| 120 |
with gr.Column(scale=2):
|
| 121 |
with gr.Row(equal_height=True):
|
|
|
|
|
|
|
| 122 |
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
|
| 123 |
|
| 124 |
with gr.Row(equal_height=True):
|
|
|
|
| 135 |
with gr.Column(scale=2):
|
| 136 |
pass
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
generate_btn.click(
|
| 139 |
+
fn=stitch_rgbd_videos,
|
| 140 |
+
inputs=[processed_video, depth_vis_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
|
| 141 |
+
outputs=[stitched_video],
|
| 142 |
)
|
| 143 |
|
| 144 |
return demo
|