Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import sys
|
| 3 |
+
import numpy as np
|
| 4 |
+
import mxnet as mx
|
| 5 |
+
import os
|
| 6 |
+
from __future__ import absolute_import
|
| 7 |
+
from __future__ import division
|
| 8 |
+
from __future__ import print_function
|
| 9 |
+
|
| 10 |
+
from scipy import misc
|
| 11 |
+
import random
|
| 12 |
+
import sklearn
|
| 13 |
+
from sklearn.decomposition import PCA
|
| 14 |
+
from time import sleep
|
| 15 |
+
from easydict import EasyDict as edict
|
| 16 |
+
from mtcnn_detector import MtcnnDetector
|
| 17 |
+
from skimage import transform as trans
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from mxnet.contrib.onnx.onnx2mx.import_model import import_model
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_model(ctx, model):
|
| 23 |
+
image_size = (112,112)
|
| 24 |
+
# Import ONNX model
|
| 25 |
+
sym, arg_params, aux_params = import_model(model)
|
| 26 |
+
# Define and binds parameters to the network
|
| 27 |
+
model = mx.mod.Module(symbol=sym, context=ctx, label_names = None)
|
| 28 |
+
model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))])
|
| 29 |
+
model.set_params(arg_params, aux_params)
|
| 30 |
+
return model
|
| 31 |
+
|
| 32 |
+
for i in range(4):
|
| 33 |
+
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}-0001.params'.format(i+1))
|
| 34 |
+
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}-symbol.json'.format(i+1))
|
| 35 |
+
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}.caffemodel'.format(i+1))
|
| 36 |
+
mx.test_utils.download(dirname='mtcnn-model', url='https://s3.amazonaws.com/onnx-model-zoo/arcface/mtcnn-model/det{}.prototxt'.format(i+1))
|
| 37 |
+
|
| 38 |
+
# Determine and set context
|
| 39 |
+
if len(mx.test_utils.list_gpus())==0:
|
| 40 |
+
ctx = mx.cpu()
|
| 41 |
+
else:
|
| 42 |
+
ctx = mx.gpu(0)
|
| 43 |
+
# Configure face detector
|
| 44 |
+
det_threshold = [0.6,0.7,0.8]
|
| 45 |
+
mtcnn_path = os.path.join(os.path.dirname('__file__'), 'mtcnn-model')
|
| 46 |
+
detector = MtcnnDetector(model_folder=mtcnn_path, ctx=ctx, num_worker=1, accurate_landmark = True, threshold=det_threshold)
|
| 47 |
+
|
| 48 |
+
def preprocess(img, bbox=None, landmark=None, **kwargs):
|
| 49 |
+
M = None
|
| 50 |
+
image_size = []
|
| 51 |
+
str_image_size = kwargs.get('image_size', '')
|
| 52 |
+
# Assert input shape
|
| 53 |
+
if len(str_image_size)>0:
|
| 54 |
+
image_size = [int(x) for x in str_image_size.split(',')]
|
| 55 |
+
if len(image_size)==1:
|
| 56 |
+
image_size = [image_size[0], image_size[0]]
|
| 57 |
+
assert len(image_size)==2
|
| 58 |
+
assert image_size[0]==112
|
| 59 |
+
assert image_size[0]==112 or image_size[1]==96
|
| 60 |
+
|
| 61 |
+
# Do alignment using landmark points
|
| 62 |
+
if landmark is not None:
|
| 63 |
+
assert len(image_size)==2
|
| 64 |
+
src = np.array([
|
| 65 |
+
[30.2946, 51.6963],
|
| 66 |
+
[65.5318, 51.5014],
|
| 67 |
+
[48.0252, 71.7366],
|
| 68 |
+
[33.5493, 92.3655],
|
| 69 |
+
[62.7299, 92.2041] ], dtype=np.float32 )
|
| 70 |
+
if image_size[1]==112:
|
| 71 |
+
src[:,0] += 8.0
|
| 72 |
+
dst = landmark.astype(np.float32)
|
| 73 |
+
tform = trans.SimilarityTransform()
|
| 74 |
+
tform.estimate(dst, src)
|
| 75 |
+
M = tform.params[0:2,:]
|
| 76 |
+
assert len(image_size)==2
|
| 77 |
+
warped = cv2.warpAffine(img,M,(image_size[1],image_size[0]), borderValue = 0.0)
|
| 78 |
+
return warped
|
| 79 |
+
|
| 80 |
+
# If no landmark points available, do alignment using bounding box. If no bounding box available use center crop
|
| 81 |
+
if M is None:
|
| 82 |
+
if bbox is None:
|
| 83 |
+
det = np.zeros(4, dtype=np.int32)
|
| 84 |
+
det[0] = int(img.shape[1]*0.0625)
|
| 85 |
+
det[1] = int(img.shape[0]*0.0625)
|
| 86 |
+
det[2] = img.shape[1] - det[0]
|
| 87 |
+
det[3] = img.shape[0] - det[1]
|
| 88 |
+
else:
|
| 89 |
+
det = bbox
|
| 90 |
+
margin = kwargs.get('margin', 44)
|
| 91 |
+
bb = np.zeros(4, dtype=np.int32)
|
| 92 |
+
bb[0] = np.maximum(det[0]-margin/2, 0)
|
| 93 |
+
bb[1] = np.maximum(det[1]-margin/2, 0)
|
| 94 |
+
bb[2] = np.minimum(det[2]+margin/2, img.shape[1])
|
| 95 |
+
bb[3] = np.minimum(det[3]+margin/2, img.shape[0])
|
| 96 |
+
ret = img[bb[1]:bb[3],bb[0]:bb[2],:]
|
| 97 |
+
if len(image_size)>0:
|
| 98 |
+
ret = cv2.resize(ret, (image_size[1], image_size[0]))
|
| 99 |
+
return ret
|
| 100 |
+
|
| 101 |
+
def get_input(detector,face_img):
|
| 102 |
+
# Pass input images through face detector
|
| 103 |
+
ret = detector.detect_face(face_img, det_type = 0)
|
| 104 |
+
if ret is None:
|
| 105 |
+
return None
|
| 106 |
+
bbox, points = ret
|
| 107 |
+
if bbox.shape[0]==0:
|
| 108 |
+
return None
|
| 109 |
+
bbox = bbox[0,0:4]
|
| 110 |
+
points = points[0,:].reshape((2,5)).T
|
| 111 |
+
# Call preprocess() to generate aligned images
|
| 112 |
+
nimg = preprocess(face_img, bbox, points, image_size='112,112')
|
| 113 |
+
nimg = cv2.cvtColor(nimg, cv2.COLOR_BGR2RGB)
|
| 114 |
+
aligned = np.transpose(nimg, (2,0,1))
|
| 115 |
+
return aligned
|
| 116 |
+
|
| 117 |
+
def get_feature(model,aligned):
|
| 118 |
+
input_blob = np.expand_dims(aligned, axis=0)
|
| 119 |
+
data = mx.nd.array(input_blob)
|
| 120 |
+
db = mx.io.DataBatch(data=(data,))
|
| 121 |
+
model.forward(db, is_train=False)
|
| 122 |
+
embedding = model.get_outputs()[0].asnumpy()
|
| 123 |
+
embedding = sklearn.preprocessing.normalize(embedding).flatten()
|
| 124 |
+
return embedding
|
| 125 |
+
|
| 126 |
+
# Download first image
|
| 127 |
+
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/player1.jpg')
|
| 128 |
+
# Download second image
|
| 129 |
+
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/player2.jpg')
|
| 130 |
+
# Download onnx model
|
| 131 |
+
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/arcface/resnet100.onnx')
|
| 132 |
+
# Path to ONNX model
|
| 133 |
+
model_name = 'resnet100.onnx'
|
| 134 |
+
|
| 135 |
+
# Load ONNX model
|
| 136 |
+
model = get_model(ctx , model_name)
|
| 137 |
+
|
| 138 |
+
def inference(img1,img2):
|
| 139 |
+
# Load first image
|
| 140 |
+
img1 = cv2.imread(img1)
|
| 141 |
+
|
| 142 |
+
# Preprocess first image
|
| 143 |
+
pre1 = get_input(detector,img1)
|
| 144 |
+
|
| 145 |
+
# Get embedding of first image
|
| 146 |
+
out1 = get_feature(model,pre1)
|
| 147 |
+
|
| 148 |
+
# Load second image
|
| 149 |
+
img2 = cv2.imread('player2.jpg')
|
| 150 |
+
|
| 151 |
+
# Preprocess second image
|
| 152 |
+
pre2 = get_input(detector,img2)
|
| 153 |
+
|
| 154 |
+
# Get embedding of second image
|
| 155 |
+
out2 = get_feature(model,pre2)
|
| 156 |
+
|
| 157 |
+
# Compute squared distance between embeddings
|
| 158 |
+
dist = np.sum(np.square(out1-out2))
|
| 159 |
+
# Compute cosine similarity between embedddings
|
| 160 |
+
sim = np.dot(out1, out2.T)
|
| 161 |
+
# Print predictions
|
| 162 |
+
return 'Distance = %f' %(dist),'Similarity = %f' %(sim)
|
| 163 |
+
|
| 164 |
+
gr.Interface(inference,[gr.inputs.Image(type="file"),gr.inputs.Image(type="file")],["text","text"]).launch()
|