Spaces:
Running
Running
File size: 13,879 Bytes
66dc1bf 0137587 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf adb0a5a 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf 8dfbce4 66dc1bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import yfinance as yf
import pandas as pd
import numpy as np
import talib
import math
import requests
import time
import datetime
import os
from pathlib import Path
from datetime import timedelta
from collections import OrderedDict
from rsistrategies import get_rsi_trade_signal
from macdstrategies import get_macd_trade_signal
from emastrategies import get_ema_trade_signal
from atrstrategies import get_atr_trade_signal
from adxstrategies import get_adx_trade_signal
from fibostrategies import get_fibonacci_trade_signal
from priceactionstrategies import get_priceaction_trade_signal
from srstrategies import get_support_resistance_signal
from bbstrategies import get_bollinger_trade_signal
from fundamental import get_fundamental_details
from news import get_latest_news_with_sentiment
from highlow_forecast import forecast_next_15_high_low
import os, numpy as np, pandas as pd
BASE_DIR = Path(__file__).resolve().parent
# ===================== TA scoring =====================
def calculate_technical_analysis_score(indicator_scores):
indicator_weights = {
'RSI': 13,
'MACD': 13,
'ATR': 5,
'ADX': 4,
'EMA': 13,
'PriceAction': 14,
'Bollinger': 10,
'Fibonacci': 4,
'SR': 9
}
weight_values = list(indicator_weights.values())
weighted_score = sum(score * weight for score, weight in zip(indicator_scores, weight_values))
total_weight = sum(weight_values)
technical_analysis_score = (weighted_score / (total_weight * 100)) * 85
overall_ta_signal_100 = np.where(
technical_analysis_score > 65, 'Buy',
np.where(technical_analysis_score > 40, 'Neutral', 'DBuy')
)
return technical_analysis_score, overall_ta_signal_100
def signal_from_score(score, max_points, buy_frac=0.65, neutral_frac=0.40):
buy_cutoff = buy_frac * max_points
neutral_cutoff = neutral_frac * max_points
if score > buy_cutoff:
return "Buy"
elif score > neutral_cutoff:
return "Neutral"
else:
return "DBuy"
# ================== Pivot levels & trade ==================
def calculate_pivot_points(ticker, score, live_price, atr_period=14):
data = yf.download(ticker, period="2mo", interval="1wk")
df = yf.download(ticker, period="2mo", interval="1d")
if score < 50:
return {
"remarks": "Score is below 50%, avoid trading. No trade recommendation",
"pivot_point": "N/A", "resistance1": "N/A", "support1": "N/A",
"resistance2": "N/A", "support2": "N/A",
"resistance3": "N/A", "support3": "N/A",
"entry_point": "N/A", "stop_loss": "N/A", "target_price": "N/A",
"s1_pect": "N/A", "s2_pect": "N/A", "s3_pect": "N/A",
"r1_pect": "N/A", "r2_pect": "N/A", "r3_pect": "N/A", "p1_pect": "N/A"
}
if 50 <= score < 65:
stoploss_multiplier, risk_reward_ratio = 1.2, 1.5
remarks = "Neutral confidence - Monitor the price for further confirmation."
elif 65 <= score < 70:
stoploss_multiplier, risk_reward_ratio = 1.5, 2.0
remarks = "Moderate confidence - Conservative stop loss and reward."
elif 70 <= score < 80:
stoploss_multiplier, risk_reward_ratio = 1.8, 2.5
remarks = "Good confidence - Balanced approach."
else:
stoploss_multiplier, risk_reward_ratio = 2.0, 3.0
remarks = "High confidence - Aggressive approach."
close_prices = df['Close'].to_numpy().flatten()
high_prices = df['High'].to_numpy().flatten()
low_prices = df['Low'].to_numpy().flatten()
df['ATR'] = talib.ATR(high_prices, low_prices, close_prices, timeperiod=atr_period)
latest_atr = df['ATR'].iloc[-1]
entry_point = live_price
stop_loss = entry_point - (stoploss_multiplier * latest_atr)
target_price = entry_point + ((entry_point - stop_loss) * risk_reward_ratio)
previous_week = data.iloc[-2]
high, low, close = previous_week["High"], previous_week["Low"], previous_week["Close"]
P = (high + low + close) / 3
R1 = (2 * P) - low
S1 = (2 * P) - high
R2 = P + (high - low)
S2 = P - (high - low)
R3 = high + 2 * (P - low)
S3 = low - 2 * (high - P)
p1_pect = ((P - live_price) / P) * 100
s1_pect = ((S1 - live_price) / S1) * 100
s2_pect = ((S2 - live_price) / S2) * 100
s3_pect = ((S3 - live_price) / S3) * 100
r1_pect = ((R1 - live_price) / R1) * 100
r2_pect = ((R2 - live_price) / R2) * 100
r3_pect = ((R3 - live_price) / R3) * 100
return {
"pivot_point": round(float(P), 2),
"resistance1": round(float(R1), 2),
"support1": round(float(S1), 2),
"resistance2": round(float(R2), 2),
"support2": round(float(S2), 2),
"resistance3": round(float(R3), 2),
"support3": round(float(S3), 2),
"entry_point": round(float(entry_point), 2),
"stop_loss": round(float(stop_loss), 2),
"target_price": round(float(target_price), 2),
"s1_pect": round(float(s1_pect), 2),
"s2_pect": round(float(s2_pect), 2),
"s3_pect": round(float(s3_pect), 2),
"r1_pect": round(float(r1_pect), 2),
"r2_pect": round(float(r2_pect), 2),
"r3_pect": round(float(r3_pect), 2),
"p1_pect": round(float(p1_pect), 2),
"remarks": remarks
}
# =================== Main: short-term swing ===================
def analysestock(ticker):
now = datetime.datetime.now()
formatted_datetime = now.strftime('%Y-%m-%d %H:%M:%S.%f')
threshold_time = now.replace(hour=17, minute=0, second=0, microsecond=0)
end_date = (now + datetime.timedelta(days=1)).strftime('%Y-%m-%d') if now >= threshold_time else now.strftime('%Y-%m-%d')
stock_data = yf.download(ticker, start="2023-01-01", end=end_date, interval="1d")
stock_data.columns = [col.lower() if isinstance(col, str) else col[0].lower() for col in stock_data.columns]
lasttradingdate = stock_data.index[-1].strftime('%d-%m-%Y')
stockdetail = yf.Ticker(ticker)
company_name = stockdetail.info.get("longName", "Company name not found")
live_price = stockdetail.info["regularMarketPrice"]
price_change = stockdetail.info['regularMarketChange']
percentage_change = stockdetail.info['regularMarketChangePercent']
recentdays = stock_data.tail(30)
ohlc_data = []
for index, row in recentdays.iterrows():
ohlc_data.append({
"x": index.strftime('%Y-%m-%d'),
"y": [round(row['open'], 2), round(row['high'], 2), round(row['low'], 2), round(row['close'], 2)]
})
# TA Strategy signals
rsi_trade_signal = get_rsi_trade_signal(stock_data)
macd_trade_signal = get_macd_trade_signal(stock_data)
ema_trade_signal = get_ema_trade_signal(stock_data)
atr_trade_signal = get_atr_trade_signal(stock_data)
adx_trade_signal = get_adx_trade_signal(stock_data)
fibo_trade_signal = get_fibonacci_trade_signal(stock_data)
priceaction_trade_signal = get_priceaction_trade_signal(stock_data)
bb_trade_signal = get_bollinger_trade_signal(stock_data)
sr_trade_signal = get_support_resistance_signal(stock_data)
final_trade_signal = OrderedDict([
("RSI", rsi_trade_signal['rsi_final_signal']),
("MACD", macd_trade_signal['macd_final_signal']),
("ATR", atr_trade_signal['atr_final_signal']),
("EMA", ema_trade_signal['ema_final_signal']),
("ADX", adx_trade_signal['adx_final_signal']),
("Fibo", fibo_trade_signal['fib_final_signal']),
("BB", bb_trade_signal['bollinger_final_signal']),
("SR", sr_trade_signal['sr_final_signal']),
("PA_MS", priceaction_trade_signal['priceaction_final_signal']),
])
indicator_score = [
rsi_trade_signal["rsi_score"],
macd_trade_signal['macd_score'],
atr_trade_signal['atr_score'],
adx_trade_signal['adx_score'],
ema_trade_signal['ema_score'],
priceaction_trade_signal['priceaction_score'],
bb_trade_signal['bollinger_score'],
fibo_trade_signal['fib_score'],
sr_trade_signal['sr_score']
]
overall_ta_score,overall_ta_signal = calculate_technical_analysis_score(indicator_score)
#FA signals
fundamental_analysis = get_fundamental_details(ticker)
#news
news_payload = get_latest_news_with_sentiment(
company_name,
period="1d",
max_results=10,
language="en",
country="US"
)
#overallscore
overall_fa_score = fundamental_analysis["overall_fa_score"]
overall_news_score = news_payload['overall_news_score']
overall_fa_signal = signal_from_score(overall_fa_score,15)
overall_news_signal = signal_from_score(overall_news_score,5)
combined_overall_score = overall_ta_score + overall_fa_score + overall_news_score
combined_overall_signal = np.where(combined_overall_score > 65, 'Buy',
np.where(combined_overall_score > 50, 'Neutral', 'DBuy'))
#trade recommendation
pivot_levels = calculate_pivot_points(ticker, combined_overall_score, live_price)
#prediiction
forecast_15 = None
try:
forecast_15 = forecast_next_15_high_low(
ticker=ticker,
stock_data=stock_data
)
except Exception as ex:
forecast_15 = {"error": f"{type(ex).__name__}: {ex}"}
# Summaries for 15-day forecast (max high, min low) + range series for charts
max_high_15 = None
max_high_15_date = None
min_low_15 = None
min_low_15_date = None
highlow_range_15 = None
if isinstance(forecast_15, dict) and all(k in forecast_15 for k in ("pred_high", "pred_low", "dates")):
highs = np.asarray(forecast_15["pred_high"], dtype=float)
lows = np.asarray(forecast_15["pred_low"], dtype=float)
dates = forecast_15["dates"]
if highs.size and lows.size and highs.size == lows.size == len(dates):
hi_idx = int(np.nanargmax(highs))
lo_idx = int(np.nanargmin(lows))
max_high_15 = round(float(highs[hi_idx]), 2)
max_high_15_date = dates[hi_idx]
min_low_15 = round(float(lows[lo_idx]), 2)
min_low_15_date = dates[lo_idx]
# Precomputed rangeBar data: [{x: date, y: [low, high]}]
highlow_range_15 = [
{"x": d, "y": [round(float(l), 2), round(float(h), 2)]}
for d, h, l in zip(dates, highs.tolist(), lows.tolist())
]
response = {
"ticker": ticker,
"company_name": company_name,
"lasttradingdate": lasttradingdate,
"currentdatetime": formatted_datetime,
"live_price": round(live_price, 2),
"price_change": round(price_change, 2),
"percentage_change": round(percentage_change, 2),
"ohlc_data":ohlc_data,
"RSI": rsi_trade_signal['rsi_signals'],
"MACD": macd_trade_signal['macd_signals'],
"EMA": ema_trade_signal['ema_signals'],
"ATR": atr_trade_signal['atr_signals'],
"ADX": adx_trade_signal['adx_signals'],
"Fibo": fibo_trade_signal['fib_signals'],
"SR": sr_trade_signal['support_resistance_signals'],
"BB": bb_trade_signal['bollinger_signals'],
"PA_MS": priceaction_trade_signal['priceaction_signals'],
"final_trade_signal": final_trade_signal,
"overall_ta_score": round(overall_ta_score, 2),
"overall_ta_signal": str(overall_ta_signal),
"fundamental_analysis": fundamental_analysis,
"overall_fa_score": overall_fa_score,
"overall_fa_signal": str(overall_fa_signal),
"overall_news_signal": str(overall_news_signal),
"news_overall_score": overall_news_score,
"news": news_payload["items"],
"combined_overall_score": round(combined_overall_score, 2),
"combined_overall_signal": str(combined_overall_signal),
"tradingInfo": pivot_levels,
"RSI 14": rsi_trade_signal['rsi_14_last_2_years'],
"RSI 5": rsi_trade_signal['rsi_5_last_2_years'],
"MA_20": rsi_trade_signal['ma'],
"Close": rsi_trade_signal['close'],
"LowerBB": rsi_trade_signal['lowerbb'],
"UpperBB": rsi_trade_signal['upperbb'],
"MACDLine": macd_trade_signal['macd_line'],
"MACDSignalLine": macd_trade_signal['macd_signal_line'],
"MACDHistogram": macd_trade_signal['macd_histogram'],
"ATRValue": atr_trade_signal['atr_values'],
"EMA 5": ema_trade_signal['EMA_5'],
"EMA 20": ema_trade_signal['EMA_20'],
"EMA 50": ema_trade_signal['EMA_50'],
"ADX_Indicator": adx_trade_signal['ADX_Indicator'],
"PLUS_DI": adx_trade_signal['PLUS_DI'],
"MINUS_DI": adx_trade_signal['MINUS_DI']
}
response.update({
"ai_predicted_daily_high_15": (forecast_15.get("pred_high") if isinstance(forecast_15, dict) and "pred_high" in forecast_15 else None),
"ai_predicted_daily_low_15": (forecast_15.get("pred_low") if isinstance(forecast_15, dict) and "pred_low" in forecast_15 else None),
"ai_predicted_dates_15": (forecast_15.get("dates") if isinstance(forecast_15, dict) and "dates" in forecast_15 else None),
"ai_model_meta_15d": (forecast_15.get("bundle_meta") if isinstance(forecast_15, dict) and "bundle_meta" in forecast_15 else None),
"ai_model_error_15d": (forecast_15.get("error") if isinstance(forecast_15, dict) and "error" in forecast_15 else None),
})
response.update({
"ai_predicted_max_high_15": max_high_15,
"ai_predicted_max_high_15_date": max_high_15_date,
"ai_predicted_min_low_15": min_low_15,
"ai_predicted_min_low_15_date": min_low_15_date,
"ai_predicted_highlow_range_15": highlow_range_15
})
return response
|