File size: 13,879 Bytes
66dc1bf
 
 
 
 
 
 
 
0137587
 
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
8dfbce4
66dc1bf
 
8dfbce4
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0a5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0a5a
 
 
 
 
 
 
66dc1bf
adb0a5a
66dc1bf
 
 
 
 
 
adb0a5a
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0a5a
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0a5a
66dc1bf
adb0a5a
 
66dc1bf
 
 
 
 
 
 
 
 
 
 
8dfbce4
66dc1bf
8dfbce4
66dc1bf
8dfbce4
66dc1bf
 
8dfbce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dc1bf
 
 
 
 
 
 
adb0a5a
 
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0a5a
 
66dc1bf
 
adb0a5a
 
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dfbce4
66dc1bf
8dfbce4
 
 
 
 
 
 
66dc1bf
 
8dfbce4
 
 
 
 
66dc1bf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import yfinance as yf
import pandas as pd
import numpy as np
import talib
import math
import requests
import time
import datetime
import os
from pathlib import Path
from datetime import timedelta
from collections import OrderedDict

from rsistrategies import get_rsi_trade_signal
from macdstrategies import get_macd_trade_signal
from emastrategies import get_ema_trade_signal
from atrstrategies import get_atr_trade_signal
from adxstrategies import get_adx_trade_signal
from fibostrategies import get_fibonacci_trade_signal
from priceactionstrategies import get_priceaction_trade_signal
from srstrategies import get_support_resistance_signal
from bbstrategies import get_bollinger_trade_signal
from fundamental import get_fundamental_details
from news import get_latest_news_with_sentiment
from highlow_forecast import forecast_next_15_high_low
import os, numpy as np, pandas as pd

BASE_DIR = Path(__file__).resolve().parent 

# ===================== TA scoring =====================
def calculate_technical_analysis_score(indicator_scores):
    indicator_weights = {
        'RSI': 13,
        'MACD': 13,
        'ATR': 5,
        'ADX': 4,
        'EMA': 13,
        'PriceAction': 14,
        'Bollinger': 10,
        'Fibonacci': 4,
        'SR': 9
    }
    weight_values = list(indicator_weights.values())
    weighted_score = sum(score * weight for score, weight in zip(indicator_scores, weight_values))
    total_weight = sum(weight_values)
    technical_analysis_score = (weighted_score / (total_weight * 100)) * 85  
    overall_ta_signal_100 = np.where(
        technical_analysis_score > 65, 'Buy',
        np.where(technical_analysis_score > 40, 'Neutral', 'DBuy')
    )
    return technical_analysis_score, overall_ta_signal_100
  
def signal_from_score(score, max_points, buy_frac=0.65, neutral_frac=0.40):
    
    buy_cutoff = buy_frac * max_points
    neutral_cutoff = neutral_frac * max_points

    if score > buy_cutoff:
        return "Buy"
    elif score > neutral_cutoff:
        return "Neutral"
    else:
        return "DBuy"

# ================== Pivot levels & trade ==================
def calculate_pivot_points(ticker, score, live_price, atr_period=14):
    data = yf.download(ticker, period="2mo", interval="1wk")
    df = yf.download(ticker, period="2mo", interval="1d")

    if score < 50:
        return {
            "remarks": "Score is below 50%, avoid trading. No trade recommendation",
            "pivot_point": "N/A", "resistance1": "N/A", "support1": "N/A",
            "resistance2": "N/A", "support2": "N/A",
            "resistance3": "N/A", "support3": "N/A",
            "entry_point": "N/A", "stop_loss": "N/A", "target_price": "N/A",
            "s1_pect": "N/A", "s2_pect": "N/A", "s3_pect": "N/A",
            "r1_pect": "N/A", "r2_pect": "N/A", "r3_pect": "N/A", "p1_pect": "N/A"
        }

    if 50 <= score < 65:
        stoploss_multiplier, risk_reward_ratio = 1.2, 1.5
        remarks = "Neutral confidence - Monitor the price for further confirmation."
    elif 65 <= score < 70:
        stoploss_multiplier, risk_reward_ratio = 1.5, 2.0
        remarks = "Moderate confidence - Conservative stop loss and reward."
    elif 70 <= score < 80:
        stoploss_multiplier, risk_reward_ratio = 1.8, 2.5
        remarks = "Good confidence - Balanced approach."
    else:
        stoploss_multiplier, risk_reward_ratio = 2.0, 3.0
        remarks = "High confidence - Aggressive approach."

    close_prices = df['Close'].to_numpy().flatten()
    high_prices = df['High'].to_numpy().flatten()
    low_prices = df['Low'].to_numpy().flatten()
    df['ATR'] = talib.ATR(high_prices, low_prices, close_prices, timeperiod=atr_period)

    latest_atr = df['ATR'].iloc[-1]
    entry_point = live_price
    stop_loss = entry_point - (stoploss_multiplier * latest_atr)
    target_price = entry_point + ((entry_point - stop_loss) * risk_reward_ratio)

    previous_week = data.iloc[-2]
    high, low, close = previous_week["High"], previous_week["Low"], previous_week["Close"]

    P = (high + low + close) / 3
    R1 = (2 * P) - low
    S1 = (2 * P) - high
    R2 = P + (high - low)
    S2 = P - (high - low)
    R3 = high + 2 * (P - low)
    S3 = low - 2 * (high - P)

    p1_pect = ((P - live_price) / P) * 100
    s1_pect = ((S1 - live_price) / S1) * 100
    s2_pect = ((S2 - live_price) / S2) * 100
    s3_pect = ((S3 - live_price) / S3) * 100
    r1_pect = ((R1 - live_price) / R1) * 100
    r2_pect = ((R2 - live_price) / R2) * 100
    r3_pect = ((R3 - live_price) / R3) * 100

    return {
        "pivot_point": round(float(P), 2),
        "resistance1": round(float(R1), 2),
        "support1": round(float(S1), 2),
        "resistance2": round(float(R2), 2),
        "support2": round(float(S2), 2),
        "resistance3": round(float(R3), 2),
        "support3": round(float(S3), 2),
        "entry_point": round(float(entry_point), 2),
        "stop_loss": round(float(stop_loss), 2),
        "target_price": round(float(target_price), 2),
        "s1_pect": round(float(s1_pect), 2),
        "s2_pect": round(float(s2_pect), 2),
        "s3_pect": round(float(s3_pect), 2),
        "r1_pect": round(float(r1_pect), 2),
        "r2_pect": round(float(r2_pect), 2),
        "r3_pect": round(float(r3_pect), 2),
        "p1_pect": round(float(p1_pect), 2),
        "remarks": remarks
    }



# =================== Main: short-term swing ===================
def analysestock(ticker):
    now = datetime.datetime.now()
    formatted_datetime = now.strftime('%Y-%m-%d %H:%M:%S.%f')

    threshold_time = now.replace(hour=17, minute=0, second=0, microsecond=0)
    end_date = (now + datetime.timedelta(days=1)).strftime('%Y-%m-%d') if now >= threshold_time else now.strftime('%Y-%m-%d')

    stock_data = yf.download(ticker, start="2023-01-01", end=end_date, interval="1d") 
    stock_data.columns = [col.lower() if isinstance(col, str) else col[0].lower() for col in stock_data.columns]
    lasttradingdate = stock_data.index[-1].strftime('%d-%m-%Y')
    stockdetail = yf.Ticker(ticker)
    company_name = stockdetail.info.get("longName", "Company name not found")
    live_price = stockdetail.info["regularMarketPrice"]
    price_change = stockdetail.info['regularMarketChange']
    percentage_change = stockdetail.info['regularMarketChangePercent']

    recentdays = stock_data.tail(30)
    ohlc_data = []
    for index, row in recentdays.iterrows():
        ohlc_data.append({
            "x": index.strftime('%Y-%m-%d'),
            "y": [round(row['open'], 2), round(row['high'], 2), round(row['low'], 2), round(row['close'], 2)]
        })

    # TA Strategy signals
    rsi_trade_signal = get_rsi_trade_signal(stock_data)
    macd_trade_signal = get_macd_trade_signal(stock_data)
    ema_trade_signal = get_ema_trade_signal(stock_data)
    atr_trade_signal = get_atr_trade_signal(stock_data)
    adx_trade_signal = get_adx_trade_signal(stock_data)
    fibo_trade_signal = get_fibonacci_trade_signal(stock_data)
    priceaction_trade_signal = get_priceaction_trade_signal(stock_data)
    bb_trade_signal = get_bollinger_trade_signal(stock_data)
    sr_trade_signal = get_support_resistance_signal(stock_data)

    final_trade_signal = OrderedDict([
        ("RSI", rsi_trade_signal['rsi_final_signal']),
        ("MACD", macd_trade_signal['macd_final_signal']),
        ("ATR", atr_trade_signal['atr_final_signal']),
        ("EMA", ema_trade_signal['ema_final_signal']),
        ("ADX", adx_trade_signal['adx_final_signal']),
        ("Fibo", fibo_trade_signal['fib_final_signal']),
        ("BB", bb_trade_signal['bollinger_final_signal']),
        ("SR", sr_trade_signal['sr_final_signal']),
        ("PA_MS", priceaction_trade_signal['priceaction_final_signal']),
    ])

    indicator_score = [
        rsi_trade_signal["rsi_score"],
        macd_trade_signal['macd_score'],
        atr_trade_signal['atr_score'],
        adx_trade_signal['adx_score'],
        ema_trade_signal['ema_score'],
        priceaction_trade_signal['priceaction_score'],
        bb_trade_signal['bollinger_score'],
        fibo_trade_signal['fib_score'],
        sr_trade_signal['sr_score']
    ]

    overall_ta_score,overall_ta_signal = calculate_technical_analysis_score(indicator_score)

    #FA signals

    fundamental_analysis = get_fundamental_details(ticker)

    #news   
    
    news_payload = get_latest_news_with_sentiment(
        company_name,
        period="1d",      
        max_results=10,
        language="en",
        country="US"      
    )

    #overallscore

    overall_fa_score = fundamental_analysis["overall_fa_score"]     
    overall_news_score = news_payload['overall_news_score']
    overall_fa_signal = signal_from_score(overall_fa_score,15)
    overall_news_signal = signal_from_score(overall_news_score,5)
    combined_overall_score = overall_ta_score + overall_fa_score + overall_news_score
    combined_overall_signal = np.where(combined_overall_score > 65, 'Buy',
                                       np.where(combined_overall_score > 50, 'Neutral', 'DBuy'))


    #trade recommendation

    pivot_levels = calculate_pivot_points(ticker, combined_overall_score, live_price)


    #prediiction
    forecast_15 = None
    try:
        forecast_15 = forecast_next_15_high_low(
            ticker=ticker,
            stock_data=stock_data
        )
    except Exception as ex:
        forecast_15 = {"error": f"{type(ex).__name__}: {ex}"}


    # Summaries for 15-day forecast (max high, min low) + range series for charts
    max_high_15 = None
    max_high_15_date = None
    min_low_15 = None
    min_low_15_date = None
    highlow_range_15 = None

    if isinstance(forecast_15, dict) and all(k in forecast_15 for k in ("pred_high", "pred_low", "dates")):
        highs = np.asarray(forecast_15["pred_high"], dtype=float)
        lows = np.asarray(forecast_15["pred_low"], dtype=float)
        dates = forecast_15["dates"]

        if highs.size and lows.size and highs.size == lows.size == len(dates):
            hi_idx = int(np.nanargmax(highs))
            lo_idx = int(np.nanargmin(lows))

            max_high_15 = round(float(highs[hi_idx]), 2)
            max_high_15_date = dates[hi_idx]
            min_low_15 = round(float(lows[lo_idx]), 2)
            min_low_15_date = dates[lo_idx]

            # Precomputed rangeBar data: [{x: date, y: [low, high]}]
            highlow_range_15 = [
                {"x": d, "y": [round(float(l), 2), round(float(h), 2)]}
                for d, h, l in zip(dates, highs.tolist(), lows.tolist())
            ]




    response = {        
        "ticker": ticker,
        "company_name": company_name,
        "lasttradingdate": lasttradingdate,
        "currentdatetime": formatted_datetime,
        "live_price": round(live_price, 2),
        "price_change": round(price_change, 2),
        "percentage_change": round(percentage_change, 2),
        "ohlc_data":ohlc_data,
        "RSI": rsi_trade_signal['rsi_signals'],
        "MACD": macd_trade_signal['macd_signals'],
        "EMA": ema_trade_signal['ema_signals'],
        "ATR": atr_trade_signal['atr_signals'],
        "ADX": adx_trade_signal['adx_signals'],
        "Fibo": fibo_trade_signal['fib_signals'],
        "SR": sr_trade_signal['support_resistance_signals'],
        "BB": bb_trade_signal['bollinger_signals'],
        "PA_MS": priceaction_trade_signal['priceaction_signals'],
        "final_trade_signal": final_trade_signal,
        "overall_ta_score": round(overall_ta_score, 2),  
        "overall_ta_signal": str(overall_ta_signal),
        "fundamental_analysis": fundamental_analysis,
        "overall_fa_score": overall_fa_score,
        "overall_fa_signal": str(overall_fa_signal),
        "overall_news_signal": str(overall_news_signal),
        "news_overall_score": overall_news_score,
        "news": news_payload["items"],
        "combined_overall_score": round(combined_overall_score, 2),
        "combined_overall_signal": str(combined_overall_signal),
        "tradingInfo": pivot_levels,

        "RSI 14": rsi_trade_signal['rsi_14_last_2_years'],
        "RSI 5": rsi_trade_signal['rsi_5_last_2_years'],
        "MA_20": rsi_trade_signal['ma'],
        "Close": rsi_trade_signal['close'],
        "LowerBB": rsi_trade_signal['lowerbb'],
        "UpperBB": rsi_trade_signal['upperbb'],
        "MACDLine": macd_trade_signal['macd_line'],
        "MACDSignalLine": macd_trade_signal['macd_signal_line'],
        "MACDHistogram": macd_trade_signal['macd_histogram'],
        "ATRValue": atr_trade_signal['atr_values'],
        "EMA 5": ema_trade_signal['EMA_5'],
        "EMA 20": ema_trade_signal['EMA_20'],
        "EMA 50": ema_trade_signal['EMA_50'],
        "ADX_Indicator": adx_trade_signal['ADX_Indicator'],
        "PLUS_DI": adx_trade_signal['PLUS_DI'],
        "MINUS_DI": adx_trade_signal['MINUS_DI']       
    }  
    response.update({
        "ai_predicted_daily_high_15": (forecast_15.get("pred_high") if isinstance(forecast_15, dict) and "pred_high" in forecast_15 else None),
        "ai_predicted_daily_low_15": (forecast_15.get("pred_low") if isinstance(forecast_15, dict) and "pred_low" in forecast_15 else None),
        "ai_predicted_dates_15": (forecast_15.get("dates") if isinstance(forecast_15, dict) and "dates" in forecast_15 else None),
        "ai_model_meta_15d": (forecast_15.get("bundle_meta") if isinstance(forecast_15, dict) and "bundle_meta" in forecast_15 else None),
        "ai_model_error_15d": (forecast_15.get("error") if isinstance(forecast_15, dict) and "error" in forecast_15 else None),
    })

    response.update({
        "ai_predicted_max_high_15": max_high_15,
        "ai_predicted_max_high_15_date": max_high_15_date,
        "ai_predicted_min_low_15": min_low_15,
        "ai_predicted_min_low_15_date": min_low_15_date,
        "ai_predicted_highlow_range_15": highlow_range_15
    })

    return response