File size: 4,743 Bytes
66dc1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import datetime
import talib


# Calculate ATR values
def calculate_atr(data):
    atr = talib.ATR(data['high'], data['low'], data['close'], timeperiod=14)      
    return atr

# ATR Breakout Strategy (Price crossing ATR threshold)
def atr_breakout_strategy(data, atr, multiplier=2):
    latest_close = data['close'].iloc[-2]
    previous_close = data['close'].iloc[-1]
    latest_atr = atr.iloc[-2]
    threshold_up = latest_close + (multiplier * latest_atr)
    threshold_down = latest_close - (multiplier * latest_atr)

    # Bullish breakout (price moves above ATR threshold)
    if previous_close > threshold_up:
        return "Bullish"
    # Bearish breakout (price moves below ATR threshold)
    elif previous_close < threshold_down:
        return "Bearish"
    # No breakout, neutral
    else:
        return "Neutral"

def calculate_dynamic_threshold(atr, period=14):
   
    atr_change = atr.pct_change(periods=period)  
    atr_std = atr_change.std()  
    dynamic_threshold = 2 * atr_std  
    return dynamic_threshold

# ATR Expansion Strategy (Confirming trend continuation)
def atr_expansion_strategy(data, atr, period=14, days_to_check=5):
   
   
    dynamicthreshold = calculate_dynamic_threshold(atr, period)
   
 
    atr_last = atr.iloc[-days_to_check:]  
    atr_expansion = atr_last[-1] > atr_last.mean() + dynamicthreshold  
    
    if atr_expansion:
        
        if data['close'].iloc[-1] > data['close'].iloc[-2]:
            return "Bullish"  
        elif data['close'].iloc[-1] < data['close'].iloc[-2]:
            return "Bearish"  
        else:
            return "Neutral" 

  
    return "Neutral"  

# ATR Squeeze/Compression Strategy (Confirming trend continuation)
def atr_squeeze_strategy(data, atr, period=14, days_to_check=5):   
   
    dynamicthreshold = calculate_dynamic_threshold(atr, period)   
 
    atr_last = atr.iloc[-days_to_check:]  
    atr_compression = atr_last[-1] < atr_last.mean() - dynamicthreshold  
    resistance = data['high'].iloc[-days_to_check:].max() 
    support = data['low'].iloc[-days_to_check:].min() 

    if atr_compression:

        if data['close'].iloc[-1] > resistance:
            return "Bullish"            
       
        elif data['close'].iloc[-1] < support:
            return "Bearish"       
       
        else:
            return "Neutral" 

  
    return "Neutral" 

# ATR Trend Reversal Strategy (ATR rising during price reversal)
def atr_trend_reversal_strategy(atr, price, days=5):
    # Look at the change in price and ATR
    price_diff = price.iloc[-1] - price.iloc[-days]
    atr_diff = atr.iloc[-1] - atr.iloc[-days]
    
    # If price is reversing (uptrend to downtrend or vice versa), and ATR is increasing
    if price_diff > 0 and atr_diff > 0:
        return "Bullish"
    elif price_diff < 0 and atr_diff > 0:
        return "Bearish"
    return "Neutral"

# Main strategy function using ATR strategy
def atr_strategies(data):
    
    atr = calculate_atr(data)
    
    atr_breakout = atr_breakout_strategy(data, atr)    
   
    atr_expansion = atr_expansion_strategy(data,atr)

    atr_squeeze = atr_squeeze_strategy(data,atr)  
    
    atr_trend_reversal = atr_trend_reversal_strategy(atr, data['close'])

    # Collect signals
    signals = {
        "ATR": round(atr.iloc[-1], 2),
        "ATR Breakout": atr_breakout,
        "ATR Expansion": atr_expansion,    
        "ATR Squeeze": atr_squeeze,    
        "ATR Trend Reversal": atr_trend_reversal
    }

    weights = {
        "ATR Breakout": 45,
        "ATR Expansion": 15, 
        "ATR Squeeze": 15,
        "ATR Trend Reversal": 25       
    }

    total_score = 0
    for strategy, weight in weights.items():
        signal = signals[strategy]
        if signal == "Bullish":
            total_score += weight
        elif signal == "Neutral":
            total_score += weight * 0.5

    overall_percentage = round((total_score / sum(weights.values())) * 100, 2)

    if overall_percentage >= 60:
        final_signal = "Buy"
    elif overall_percentage <= 40:
        final_signal = "DBuy"
    else:
        final_signal = "Neutral"

    return signals, overall_percentage, final_signal,atr

# API-style function to fetch ATR signals
def get_atr_trade_signal(data):
    atr_signals, overallscore, final_signal,atr = atr_strategies(data)
    atr_series = pd.Series(atr, index=data.index).dropna().tail(100)
    atr_series.index = atr_series.index.strftime('%Y-%m-%d')
    return {
        "atr_signals": atr_signals,
        "atr_score": overallscore,
        "atr_final_signal": final_signal,
        "atr_values": atr_series.round(2).to_dict()

    }