Spaces:
Running
Running
File size: 10,726 Bytes
66dc1bf 9c5679c 6c90094 66dc1bf 6c90094 66dc1bf 6c90094 66dc1bf 9c5679c 66dc1bf 6c90094 66dc1bf 6c90094 51b884b 66dc1bf 6c90094 66dc1bf 6c90094 66dc1bf 51b884b 66dc1bf 51b884b 66dc1bf 51b884b 66dc1bf 6c90094 51b884b 6c90094 51b884b b59637a 6c90094 51b884b b59637a 51b884b 6c90094 51b884b 6c90094 51b884b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import csv, io, json, time, os
from typing import Dict, List, Any, Optional
from pathlib import Path
from io import StringIO
import requests
# optional (for Wikipedia tables)
try:
import pandas as pd # requires: pip install pandas lxml
HAS_PANDAS = True
except Exception:
HAS_PANDAS = False
# ---------- configuration (unchanged names) ----------
UA = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127 Safari/537.36"
REFERER = "https://www.niftyindices.com/indices/equity/broad-based-indices"
TTL_SECONDS = 60 * 60 * 12 # 12h cache
DEFAULT_CACHE_DIR = os.getenv("CACHE_DIR", "/data/cache")
CACHE_DIR = Path(DEFAULT_CACHE_DIR if DEFAULT_CACHE_DIR else ".").expanduser()
if CACHE_DIR == Path("."):
CACHE_DIR = Path(__file__).with_name("cache")
CACHE_DIR.mkdir(parents=True, exist_ok=True)
# Official CSV endpoints for NSE indices (unchanged name)
NIFTY_URLS: Dict[str, str] = {
"NIFTY50": "https://www.niftyindices.com/IndexConstituent/ind_nifty50list.csv",
"NIFTY100": "https://www.niftyindices.com/IndexConstituent/ind_nifty100list.csv",
"NIFTY200": "https://www.niftyindices.com/IndexConstituent/ind_nifty200list.csv",
"NIFTYMID100": "https://www.niftyindices.com/IndexConstituent/ind_niftymidcap100list.csv",
"NIFTY500": "https://www.niftyindices.com/IndexConstituent/ind_nifty500list.csv",
}
# Filters payload for the UI (unchanged variable name)
MARKETS: Dict[str, Dict[str, List[Dict[str, str]]]] = {
"India": {
"NSE (National Stock Exchange)": [
{"code": "NIFTY50", "name": "NIFTY 50"},
{"code": "NIFTY100", "name": "NIFTY 100"},
{"code": "NIFTY200", "name": "NIFTY 200"},
{"code": "NIFTYMID100", "name": "NIFTY Midcap 100"},
{"code": "NIFTY500", "name": "NIFTY 500"},
]
}
}
# ---------- extras (new, additive) ----------
WIKI_PAGES: Dict[str, str] = {
"NASDAQ100": "https://en.wikipedia.org/wiki/NASDAQ-100",
"DAX40": "https://en.wikipedia.org/wiki/DAX",
"OMXS30": "https://en.wikipedia.org/wiki/OMX_Stockholm_30",
}
EXTRA_MARKETS: Dict[str, Dict[str, List[Dict[str, str]]]] = {
"United States": {
"NASDAQ": [
{"code": "NASDAQ100", "name": "NASDAQ-100"}
]
},
"Germany": {
"XETRA (Deutsche Börse)": [
{"code": "DAX40", "name": "DAX 40"}
]
},
"Sweden": {
"OMX Stockholm": [
{"code": "OMXS30", "name": "OMX Stockholm 30"}
]
}
}
# ---------- utilities (kept original names) ----------
def http_get_text(url: str, accept: str = "text/csv,*/*") -> str:
sess = requests.Session()
sess.headers.update({"User-Agent": UA, "Referer": REFERER, "Accept": accept})
r = sess.get(url, timeout=30)
r.raise_for_status()
r.encoding = r.encoding or "utf-8"
return r.text
def parse_nifty_csv(text: str) -> List[Dict[str, str]]:
out: List[Dict[str, str]] = []
rdr = csv.DictReader(io.StringIO(text))
for row in rdr:
sym = (row.get("Symbol") or "").strip()
name = (row.get("Company Name") or "").strip()
if sym and name:
out.append({"symbol": f"{sym}.NS", "company": name})
return out
def cache_path(code: str) -> Path:
return CACHE_DIR / f"{code.lower()}.json"
def load_cache(code: str) -> Any | None:
fp = cache_path(code)
if not fp.exists():
return None
age = time.time() - fp.stat().st_mtime
if age > TTL_SECONDS:
return None
with fp.open("r", encoding="utf-8") as f:
return json.load(f)
def save_cache(code: str, payload: Any) -> None:
fp = cache_path(code)
with fp.open("w", encoding="utf-8") as f:
json.dump(payload, f, ensure_ascii=False, indent=2)
def _now_iso_utc() -> str:
return time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime())
# ---- Wikipedia helpers ----
def _fetch_wiki_tables(url: str):
if not HAS_PANDAS:
raise RuntimeError("pandas/lxml not installed. Run: pip install pandas lxml")
html = http_get_text(url, accept="text/html,*/*")
return pd.read_html(StringIO(html))
def _pick_table_and_columns(tables, ticker_candidates, company_candidates):
for t in tables:
cols_map = {str(c).strip().lower(): c for c in t.columns}
ticker_col = next((cols_map[c] for c in ticker_candidates if c in cols_map), None)
company_col = next((cols_map[c] for c in company_candidates if c in cols_map), None)
if ticker_col is not None and company_col is not None:
return t, ticker_col, company_col
raise RuntimeError(
f"No suitable table found. Ticker in {ticker_candidates}, company in {company_candidates}."
)
def _parse_wiki_constituents(url: str, ticker_candidates, company_candidates, suffix: str, upper_tickers: bool) -> List[Dict[str, str]]:
tables = _fetch_wiki_tables(url)
df, t_col, c_col = _pick_table_and_columns(tables, ticker_candidates, company_candidates)
rows: List[Dict[str, str]] = []
for sym, name in zip(df[t_col], df[c_col]):
s = str(sym).strip()
n = str(name).strip()
if not s or not n:
continue
if upper_tickers:
s = s.upper()
rows.append({"symbol": f"{s}{suffix}", "company": n})
if not rows:
raise RuntimeError("Parsed zero rows from Wikipedia table.")
return rows
def _parse_nasdaq100():
url = WIKI_PAGES["NASDAQ100"]
rows = _parse_wiki_constituents(
url,
ticker_candidates=["ticker", "symbol"],
company_candidates=["company", "name"],
suffix="",
upper_tickers=True,
)
return rows, "NASDAQ", "US", "USD", url
def _parse_dax40():
url = WIKI_PAGES["DAX40"]
rows = _parse_wiki_constituents(
url,
ticker_candidates=["ticker symbol", "ticker", "symbol"],
company_candidates=["company", "name"],
suffix=".DE",
upper_tickers=True,
)
return rows, "XETRA", "DE", "EUR", url
def _parse_omxs30():
url = WIKI_PAGES["OMXS30"]
rows = _parse_wiki_constituents(
url,
ticker_candidates=["ticker", "symbol"],
company_candidates=["company", "name"],
suffix=".ST",
upper_tickers=True,
)
return rows, "OMX Stockholm", "SE", "SEK", url
# ---------- public helpers ----------
def get_markets() -> Dict[str, Dict[str, List[Dict[str, str]]]]:
"""
Return filters structure for UI.
Does not mutate MARKETS; returns MARKETS + EXTRA_MARKETS merged.
"""
# FIX: removed an extra ']' here
merged: Dict[str, Dict[str, List[Dict[str, str]]]] = {}
# deep copy MARKETS
for country, exchanges in MARKETS.items():
merged[country] = {ex: refs[:] for ex, refs in exchanges.items()}
# merge extras
for country, exchanges in EXTRA_MARKETS.items():
merged.setdefault(country, {})
for ex, refs in exchanges.items():
merged[country].setdefault(ex, [])
merged[country][ex].extend(refs)
return merged
def _all_supported_index_codes(markets: Dict[str, Dict[str, List[Dict[str, str]]]]) -> List[str]:
codes: List[str] = []
for _country, exchanges in markets.items():
for _exch, refs in exchanges.items():
for ref in refs:
codes.append(ref["code"])
return codes
def _index_display_name(code: str, markets: Dict[str, Dict[str, List[Dict[str, str]]]]) -> str:
cu = code.upper()
for _country, exchanges in markets.items():
for _exch, refs in exchanges.items():
for ref in refs:
if ref["code"].upper() == cu:
return ref.get("name", cu)
return cu
def search_companies(q: str,
indices: Optional[List[str]] = None,
limit: int = 50) -> List[Dict[str, Any]]:
"""
Global search across supported indices (cached via build_companies_payload).
Returns items: {symbol, company, indexCode, indexName, exchange, country}
"""
q_norm = (q or "").strip().lower()
if not q_norm:
return []
markets = get_markets()
index_codes = indices or _all_supported_index_codes(markets)
results: List[Dict[str, Any]] = []
for code in index_codes:
try:
payload = build_companies_payload(code)
except Exception:
continue
idx_name = _index_display_name(code, markets)
for row in payload.get("constituents", []):
sym = str(row.get("symbol", "")).strip()
com = str(row.get("company", "")).strip()
if not sym or not com:
continue
if q_norm in sym.lower() or q_norm in com.lower():
results.append({
"symbol": sym,
"company": com,
"indexCode": payload.get("code"),
"indexName": idx_name,
"exchange": payload.get("exchange"),
"country": payload.get("country"),
})
if len(results) >= limit:
break
if len(results) >= limit:
break
def rank(item):
sym, com = item["symbol"].lower(), item["company"].lower()
if sym == q_norm or com == q_norm:
return 0
if sym.startswith(q_norm) or com.startswith(q_norm):
return 1
return 2
results.sort(key=rank)
return results[:limit]
# ---------- core (unchanged name, extended) ----------
def build_companies_payload(code: str) -> Dict[str, Any]:
code = (code or "").upper().strip()
if not code:
raise ValueError("Index code is required.")
cached = load_cache(code)
if cached:
return cached
if code in NIFTY_URLS:
url = NIFTY_URLS[code]
text = http_get_text(url)
rows = parse_nifty_csv(text)
exchange, country, currency, source = "NSE", "IN", "INR", url
elif code == "NASDAQ100":
rows, exchange, country, currency, source = _parse_nasdaq100()
elif code == "DAX40":
rows, exchange, country, currency, source = _parse_dax40()
elif code == "OMXS30":
rows, exchange, country, currency, source = _parse_omxs30()
else:
raise ValueError(f"Unknown index code: {code}")
payload = {
"code": code,
"exchange": exchange,
"country": country,
"currency": currency,
"asOf": _now_iso_utc(),
"count": len(rows),
"constituents": rows,
"source": source,
}
save_cache(code, payload)
return payload
|