Spaces:
Running
Running
File size: 7,256 Bytes
66dc1bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import talib
from collections import OrderedDict
import datetime
# --- Strategy Functions ---
def get_overbought_oversold_signal(recent):
if (recent['RSI_14'] < 30).any():
return "Bullish"
elif (recent['RSI_14'] > 70).any():
return "Bearish"
else:
return "Neutral"
def get_rsi_crossover_signal(rsi5, rsi14):
for i in range(len(rsi5) - 1):
older_rsi5 = rsi5[i]
newer_rsi5 = rsi5[i + 1]
older_rsi14 = rsi14[i]
newer_rsi14 = rsi14[i + 1]
# Bullish crossover (MACD crosses above Signal)
if older_rsi5 <= older_rsi14 and newer_rsi5 > newer_rsi14:
return "Bullish"
# Bearish crossover (MACD crosses below Signal)
elif older_rsi5 >= older_rsi14 and newer_rsi5 < newer_rsi14:
return "Bearish"
return "Neutral"
def get_mean_reversion_signal(df):
rsi = df['RSI_5']
if len(rsi) < 6:
return "Neutral"
# Check for crossover below 20 in last 5 entries
buy_signal = ((rsi < 20) & (rsi.shift(1) >= 20)).tail(5).any()
sell_signal = ((rsi > 80) & (rsi.shift(1) <= 80)).tail(5).any()
if buy_signal:
return "Bullish"
elif sell_signal:
return "Bearish"
else:
return "Neutral"
def get_bollinger_rsi_signal(recent):
buy = ((recent['close'].to_numpy().flatten() < recent['Lower_BB']) & (recent['RSI_14'] < 30)).any()
sell = ((recent['close'].to_numpy().flatten() > recent['Upper_BB']) & (recent['RSI_14'] > 70)).any()
if buy:
return "Bullish"
elif sell:
return "Bearish"
else:
return "Neutral"
def get_rsi_with_ma_signal(recent):
buy = ((recent['close'].to_numpy().flatten() > recent['MA_20']) & (recent['RSI_14'] > 50)).any()
sell = ((recent['close'].to_numpy().flatten() < recent['MA_20']) & (recent['RSI_14'] < 50)).any()
if buy:
return "Bullish"
elif sell:
return "Bearish"
else:
return "Neutral"
def get_rsi_50_trend_signal(recent):
if (recent['RSI_14'] > 50).all():
return "Bullish"
elif (recent['RSI_14'] < 50).all():
return "Bearish"
else:
return "Neutral"
def get_swing_rejection_signal(rsi14):
r1, r2, r3, r4, r5, r6 = rsi14
if (
r1 < 30 and
r2 > r1 and
r3 < r2 and r3 > r1 and
r4 > r3 and
(r5 > r2 or r6 > r2) and
r6 > 30
):
return "Bullish"
elif (
r1 > 70 and
r2 < r1 and
r3 > r2 and r3 < r1 and
r4 < r3 and
(r5 < r2 or r6 < r2) and
r6 < 70
):
return "Bearish"
return "Neutral"
def is_pivot_low(prices, idx, left=5, right=5):
"""Check if current point is a pivot low"""
if idx < left or idx + right >= len(prices):
return False
return all(prices[idx] < prices[idx - i] and prices[idx] < prices[idx + i] for i in range(1, left + 1))
def is_pivot_high(prices, idx, left=5, right=5):
"""Check if current point is a pivot high"""
if idx < left or idx + right >= len(prices):
return False
return all(prices[idx] > prices[idx - i] and prices[idx] > prices[idx + i] for i in range(1, left + 1))
def get_rsi_divergence_signal(df):
df = df.dropna().reset_index(drop=True)
prices = df['close'].values
rsi = df['RSI_14'].values
left = 5
right = 5
max_range = 20
recent_idx = len(prices) - 1 # latest candle
start_idx = max(recent_idx - max_range, left)
for i in range(recent_idx - 1, start_idx - 1, -1):
if is_pivot_low(prices, i, left, right) and is_pivot_low(rsi, i, left, right):
# Regular Bullish Divergence
if prices[recent_idx] < prices[i] and rsi[recent_idx] > rsi[i]:
return "Bullish"
if is_pivot_high(prices, i, left, right) and is_pivot_high(rsi, i, left, right):
# Regular Bearish Divergence
if prices[recent_idx] > prices[i] and rsi[recent_idx] < rsi[i]:
return "Bearish"
return "Neutral"
# --- Master RSI Strategy Function ---
def rsi_strategies(df):
close_prices = df['close']
# Calculate all indicators
df['RSI_14'] = talib.RSI(close_prices, timeperiod=14)
df['RSI_5'] = talib.RSI(close_prices, timeperiod=5)
df['MA_20'] = talib.SMA(close_prices, timeperiod=20)
df['Upper_BB'], df['Middle_BB'], df['Lower_BB'] = talib.BBANDS(close_prices, timeperiod=20)
# Ensure all calculations are added to df before slicing
recent = df.tail(5)
signals = OrderedDict([
("RSI 14", round(df[['RSI_14']].iloc[-1][0], 2)),
("Overbought/Oversold", get_overbought_oversold_signal(recent)),
("RSI Swing Rejection", get_swing_rejection_signal(df['RSI_14'].tail(6))),
("RSI Divergence", get_rsi_divergence_signal(df)),
("RSI_Bollinger Band", get_bollinger_rsi_signal(recent)),
("RSI 5/14 Crossover", get_rsi_crossover_signal(df['RSI_5'].tail(5),df['RSI_14'].tail(5))),
("RSI Trend 50 Confirmation", get_rsi_50_trend_signal(recent)),
("RSI_MA", get_rsi_with_ma_signal(recent)),
("Mean Reversion", get_mean_reversion_signal(df[['RSI_5']].tail(6)))
])
# Weightage for each signal
rsi_signal_weights = {
"Overbought/Oversold": 15,
"RSI Swing Rejection": 15,
"RSI Divergence": 15,
"RSI_Bollinger Band": 15,
"RSI 5/14 Crossover": 10,
"RSI Trend 50 Confirmation": 10,
"RSI_MA": 10,
"Mean Reversion": 10
}
# Calculate weighted score
total_score = 0
for strategy, weight in rsi_signal_weights.items():
signal = signals[strategy]
if signal == "Bullish":
total_score += weight
elif signal == "Neutral":
total_score += weight * 0.5
# Bearish gives 0 score
overall_percentage = round((total_score / sum(rsi_signal_weights.values())) * 100, 2)
# Final output signal
if overall_percentage >= 60:
final_signal = "Buy"
elif overall_percentage <= 40:
final_signal = "DBuy"
else:
final_signal = "Neutral"
return signals, overall_percentage, final_signal
def extract_series(data, column_name, days=100):
series = data[[column_name]].dropna().tail(days)
series.index = series.index.strftime('%Y-%m-%d')
return series[column_name].round(2).to_dict()
def get_rsi_trade_signal(data):
rsi_signals, overallscore, final_signal = rsi_strategies(data)
return {
"rsi_signals": rsi_signals,
"rsi_score": overallscore,
"rsi_final_signal": final_signal,
"rsi_14_last_2_years": extract_series(data, 'RSI_14'),
"rsi_5_last_2_years": extract_series(data, 'RSI_5'),
"ma": extract_series(data, 'MA_20'),
"close": extract_series(data, 'close'),
"open": extract_series(data, 'open'),
"high": extract_series(data, 'high'),
"low": extract_series(data, 'low'),
"lowerbb": extract_series(data, 'Lower_BB'),
"upperbb": extract_series(data, 'Upper_BB')
}
|