pytrade-backend / rsistrategies.py
Oviya
Track binaries via Git LFS (analysedata.xlsx, TA_Lib wheel)
66dc1bf
raw
history blame
7.26 kB
from flask import Flask, request, jsonify
import yfinance as yf
import pandas as pd
import numpy as np
import talib
from collections import OrderedDict
import datetime
# --- Strategy Functions ---
def get_overbought_oversold_signal(recent):
if (recent['RSI_14'] < 30).any():
return "Bullish"
elif (recent['RSI_14'] > 70).any():
return "Bearish"
else:
return "Neutral"
def get_rsi_crossover_signal(rsi5, rsi14):
for i in range(len(rsi5) - 1):
older_rsi5 = rsi5[i]
newer_rsi5 = rsi5[i + 1]
older_rsi14 = rsi14[i]
newer_rsi14 = rsi14[i + 1]
# Bullish crossover (MACD crosses above Signal)
if older_rsi5 <= older_rsi14 and newer_rsi5 > newer_rsi14:
return "Bullish"
# Bearish crossover (MACD crosses below Signal)
elif older_rsi5 >= older_rsi14 and newer_rsi5 < newer_rsi14:
return "Bearish"
return "Neutral"
def get_mean_reversion_signal(df):
rsi = df['RSI_5']
if len(rsi) < 6:
return "Neutral"
# Check for crossover below 20 in last 5 entries
buy_signal = ((rsi < 20) & (rsi.shift(1) >= 20)).tail(5).any()
sell_signal = ((rsi > 80) & (rsi.shift(1) <= 80)).tail(5).any()
if buy_signal:
return "Bullish"
elif sell_signal:
return "Bearish"
else:
return "Neutral"
def get_bollinger_rsi_signal(recent):
buy = ((recent['close'].to_numpy().flatten() < recent['Lower_BB']) & (recent['RSI_14'] < 30)).any()
sell = ((recent['close'].to_numpy().flatten() > recent['Upper_BB']) & (recent['RSI_14'] > 70)).any()
if buy:
return "Bullish"
elif sell:
return "Bearish"
else:
return "Neutral"
def get_rsi_with_ma_signal(recent):
buy = ((recent['close'].to_numpy().flatten() > recent['MA_20']) & (recent['RSI_14'] > 50)).any()
sell = ((recent['close'].to_numpy().flatten() < recent['MA_20']) & (recent['RSI_14'] < 50)).any()
if buy:
return "Bullish"
elif sell:
return "Bearish"
else:
return "Neutral"
def get_rsi_50_trend_signal(recent):
if (recent['RSI_14'] > 50).all():
return "Bullish"
elif (recent['RSI_14'] < 50).all():
return "Bearish"
else:
return "Neutral"
def get_swing_rejection_signal(rsi14):
r1, r2, r3, r4, r5, r6 = rsi14
if (
r1 < 30 and
r2 > r1 and
r3 < r2 and r3 > r1 and
r4 > r3 and
(r5 > r2 or r6 > r2) and
r6 > 30
):
return "Bullish"
elif (
r1 > 70 and
r2 < r1 and
r3 > r2 and r3 < r1 and
r4 < r3 and
(r5 < r2 or r6 < r2) and
r6 < 70
):
return "Bearish"
return "Neutral"
def is_pivot_low(prices, idx, left=5, right=5):
"""Check if current point is a pivot low"""
if idx < left or idx + right >= len(prices):
return False
return all(prices[idx] < prices[idx - i] and prices[idx] < prices[idx + i] for i in range(1, left + 1))
def is_pivot_high(prices, idx, left=5, right=5):
"""Check if current point is a pivot high"""
if idx < left or idx + right >= len(prices):
return False
return all(prices[idx] > prices[idx - i] and prices[idx] > prices[idx + i] for i in range(1, left + 1))
def get_rsi_divergence_signal(df):
df = df.dropna().reset_index(drop=True)
prices = df['close'].values
rsi = df['RSI_14'].values
left = 5
right = 5
max_range = 20
recent_idx = len(prices) - 1 # latest candle
start_idx = max(recent_idx - max_range, left)
for i in range(recent_idx - 1, start_idx - 1, -1):
if is_pivot_low(prices, i, left, right) and is_pivot_low(rsi, i, left, right):
# Regular Bullish Divergence
if prices[recent_idx] < prices[i] and rsi[recent_idx] > rsi[i]:
return "Bullish"
if is_pivot_high(prices, i, left, right) and is_pivot_high(rsi, i, left, right):
# Regular Bearish Divergence
if prices[recent_idx] > prices[i] and rsi[recent_idx] < rsi[i]:
return "Bearish"
return "Neutral"
# --- Master RSI Strategy Function ---
def rsi_strategies(df):
close_prices = df['close']
# Calculate all indicators
df['RSI_14'] = talib.RSI(close_prices, timeperiod=14)
df['RSI_5'] = talib.RSI(close_prices, timeperiod=5)
df['MA_20'] = talib.SMA(close_prices, timeperiod=20)
df['Upper_BB'], df['Middle_BB'], df['Lower_BB'] = talib.BBANDS(close_prices, timeperiod=20)
# Ensure all calculations are added to df before slicing
recent = df.tail(5)
signals = OrderedDict([
("RSI 14", round(df[['RSI_14']].iloc[-1][0], 2)),
("Overbought/Oversold", get_overbought_oversold_signal(recent)),
("RSI Swing Rejection", get_swing_rejection_signal(df['RSI_14'].tail(6))),
("RSI Divergence", get_rsi_divergence_signal(df)),
("RSI_Bollinger Band", get_bollinger_rsi_signal(recent)),
("RSI 5/14 Crossover", get_rsi_crossover_signal(df['RSI_5'].tail(5),df['RSI_14'].tail(5))),
("RSI Trend 50 Confirmation", get_rsi_50_trend_signal(recent)),
("RSI_MA", get_rsi_with_ma_signal(recent)),
("Mean Reversion", get_mean_reversion_signal(df[['RSI_5']].tail(6)))
])
# Weightage for each signal
rsi_signal_weights = {
"Overbought/Oversold": 15,
"RSI Swing Rejection": 15,
"RSI Divergence": 15,
"RSI_Bollinger Band": 15,
"RSI 5/14 Crossover": 10,
"RSI Trend 50 Confirmation": 10,
"RSI_MA": 10,
"Mean Reversion": 10
}
# Calculate weighted score
total_score = 0
for strategy, weight in rsi_signal_weights.items():
signal = signals[strategy]
if signal == "Bullish":
total_score += weight
elif signal == "Neutral":
total_score += weight * 0.5
# Bearish gives 0 score
overall_percentage = round((total_score / sum(rsi_signal_weights.values())) * 100, 2)
# Final output signal
if overall_percentage >= 60:
final_signal = "Buy"
elif overall_percentage <= 40:
final_signal = "DBuy"
else:
final_signal = "Neutral"
return signals, overall_percentage, final_signal
def extract_series(data, column_name, days=100):
series = data[[column_name]].dropna().tail(days)
series.index = series.index.strftime('%Y-%m-%d')
return series[column_name].round(2).to_dict()
def get_rsi_trade_signal(data):
rsi_signals, overallscore, final_signal = rsi_strategies(data)
return {
"rsi_signals": rsi_signals,
"rsi_score": overallscore,
"rsi_final_signal": final_signal,
"rsi_14_last_2_years": extract_series(data, 'RSI_14'),
"rsi_5_last_2_years": extract_series(data, 'RSI_5'),
"ma": extract_series(data, 'MA_20'),
"close": extract_series(data, 'close'),
"open": extract_series(data, 'open'),
"high": extract_series(data, 'high'),
"low": extract_series(data, 'low'),
"lowerbb": extract_series(data, 'Lower_BB'),
"upperbb": extract_series(data, 'Upper_BB')
}