Spaces:
Running
Running
Oviya
commited on
Commit
·
d7101fa
1
Parent(s):
6c90094
chatbot update
Browse files- chatbot.py +232 -0
- pytrade.py +67 -0
- requirements.txt +7 -0
chatbot.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from typing import List, Dict
|
| 8 |
+
|
| 9 |
+
from flask import Flask, request, jsonify
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import requests
|
| 12 |
+
|
| 13 |
+
# ----------------------------
|
| 14 |
+
# Optional providers (OpenAI v1 / Cohere)
|
| 15 |
+
# ----------------------------
|
| 16 |
+
OPENAI_CLIENT = None
|
| 17 |
+
try:
|
| 18 |
+
from openai import OpenAI
|
| 19 |
+
OPENAI_CLIENT = "available"
|
| 20 |
+
except Exception:
|
| 21 |
+
OPENAI_CLIENT = None
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
import cohere
|
| 25 |
+
except Exception:
|
| 26 |
+
cohere = None
|
| 27 |
+
|
| 28 |
+
load_dotenv()
|
| 29 |
+
app = Flask(__name__)
|
| 30 |
+
|
| 31 |
+
# ----------------------------
|
| 32 |
+
# Config
|
| 33 |
+
# ----------------------------
|
| 34 |
+
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "openai").lower().strip()
|
| 35 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 36 |
+
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
| 37 |
+
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY")
|
| 38 |
+
SEARCH_TOPK = int(os.getenv("SEARCH_TOPK", "5"))
|
| 39 |
+
TIMEZONE = "Asia/Kolkata"
|
| 40 |
+
|
| 41 |
+
if LLM_PROVIDER == "openai" and not OPENAI_API_KEY:
|
| 42 |
+
print("[WARN] OPENAI_API_KEY not set; general answers will fail.")
|
| 43 |
+
if LLM_PROVIDER == "cohere" and not COHERE_API_KEY:
|
| 44 |
+
print("[WARN] COHERE_API_KEY not set; general answers will fail.")
|
| 45 |
+
if not SERPAPI_API_KEY:
|
| 46 |
+
print("[WARN] SERPAPI_API_KEY not set; 'latest' queries will not work.")
|
| 47 |
+
|
| 48 |
+
# Initialize OpenAI client (v1+)
|
| 49 |
+
openai_client = None
|
| 50 |
+
if LLM_PROVIDER == "openai" and OPENAI_CLIENT and OPENAI_API_KEY:
|
| 51 |
+
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 52 |
+
|
| 53 |
+
# ----------------------------
|
| 54 |
+
# Utilities
|
| 55 |
+
# ----------------------------
|
| 56 |
+
|
| 57 |
+
# Common “latest/live” triggers
|
| 58 |
+
LATEST_TRIGGERS = [
|
| 59 |
+
r"\btoday\b", r"\bnow\b", r"\blatest\b", r"\bupdate\b", r"\brecent\b",
|
| 60 |
+
r"\bbreaking\b", r"\blive\b", r"\bthis\s+hour\b", r"\bthis\s+minute\b",
|
| 61 |
+
r"\bcurrent\b", r"\bas of\b", r"\btoday'?s\b", r"\bprice\s+today\b"
|
| 62 |
+
]
|
| 63 |
+
LATEST_PATTERN = re.compile("|".join(LATEST_TRIGGERS), re.IGNORECASE)
|
| 64 |
+
|
| 65 |
+
# Simple aliases for finance names/tickers (extend as needed)
|
| 66 |
+
ALIASES = {
|
| 67 |
+
"tcs": "Tata Consultancy Services",
|
| 68 |
+
"ril": "Reliance Industries",
|
| 69 |
+
"infy": "Infosys",
|
| 70 |
+
"hdfc bank": "HDFC Bank",
|
| 71 |
+
"icici": "ICICI Bank",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def normalize_entities(text: str) -> str:
|
| 75 |
+
t = text
|
| 76 |
+
for k, v in ALIASES.items():
|
| 77 |
+
t = re.sub(rf"\b{k}\b", v, t, flags=re.IGNORECASE)
|
| 78 |
+
return t
|
| 79 |
+
|
| 80 |
+
def needs_live_context(query: str) -> bool:
|
| 81 |
+
"""Heuristic to detect time-sensitive queries."""
|
| 82 |
+
if not query:
|
| 83 |
+
return False
|
| 84 |
+
q = query.lower()
|
| 85 |
+
|
| 86 |
+
if LATEST_PATTERN.search(q):
|
| 87 |
+
return True
|
| 88 |
+
|
| 89 |
+
# Domain shortcuts
|
| 90 |
+
domain_triggers = [
|
| 91 |
+
"who won", "match result", "score now", "stock price", "share price",
|
| 92 |
+
"usd inr rate", "exchange rate", "weather", "today's weather",
|
| 93 |
+
"news on", "headline", "earnings today", "ipo today",
|
| 94 |
+
"live price", "current price", "price right now"
|
| 95 |
+
]
|
| 96 |
+
if any(t in q for t in domain_triggers):
|
| 97 |
+
return True
|
| 98 |
+
|
| 99 |
+
# Finance shortcut: “price of <entity>”
|
| 100 |
+
if re.search(r"\bprice of\b", q) and not re.search(r"\byesterday|last close|history\b", q):
|
| 101 |
+
return True
|
| 102 |
+
|
| 103 |
+
return False
|
| 104 |
+
|
| 105 |
+
def pick_is_news(query: str) -> bool:
|
| 106 |
+
"""Treat as news if clear news terms appear."""
|
| 107 |
+
q = query.lower()
|
| 108 |
+
news_terms = ["news", "headline", "breaking", "election", "budget", "earthquake", "merger", "acquisition", "ceo resigns"]
|
| 109 |
+
return any(t in q for t in news_terms)
|
| 110 |
+
|
| 111 |
+
def serpapi_search(query: str, is_news: bool = False, num: int = SEARCH_TOPK) -> List[Dict[str, str]]:
|
| 112 |
+
"""Fetch top search or news results from SerpAPI."""
|
| 113 |
+
if not SERPAPI_API_KEY:
|
| 114 |
+
return []
|
| 115 |
+
|
| 116 |
+
params = {
|
| 117 |
+
"api_key": SERPAPI_API_KEY,
|
| 118 |
+
"q": query,
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
if is_news:
|
| 122 |
+
url = "https://serpapi.com/search.json"
|
| 123 |
+
params.update({"engine": "google_news", "num": min(num, 10), "hl": "en", "gl": "in"})
|
| 124 |
+
else:
|
| 125 |
+
url = "https://serpapi.com/search.json"
|
| 126 |
+
params.update({"engine": "google", "num": min(num, 10), "hl": "en", "gl": "in"})
|
| 127 |
+
|
| 128 |
+
r = requests.get(url, params=params, timeout=20)
|
| 129 |
+
r.raise_for_status()
|
| 130 |
+
data = r.json()
|
| 131 |
+
|
| 132 |
+
results: List[Dict[str, str]] = []
|
| 133 |
+
if is_news:
|
| 134 |
+
for item in (data.get("news_results") or [])[:num]:
|
| 135 |
+
results.append({
|
| 136 |
+
"title": item.get("title") or "",
|
| 137 |
+
"snippet": item.get("snippet") or item.get("description") or "",
|
| 138 |
+
"link": item.get("link") or "",
|
| 139 |
+
"source": (item.get("source") or {}).get("name") or item.get("source") or ""
|
| 140 |
+
})
|
| 141 |
+
else:
|
| 142 |
+
for item in (data.get("organic_results") or [])[:num]:
|
| 143 |
+
results.append({
|
| 144 |
+
"title": item.get("title") or "",
|
| 145 |
+
"snippet": item.get("snippet") or "",
|
| 146 |
+
"link": item.get("link") or "",
|
| 147 |
+
"source": item.get("source") or ""
|
| 148 |
+
})
|
| 149 |
+
return results
|
| 150 |
+
|
| 151 |
+
def build_citation_block(hits: List[Dict[str, str]]) -> str:
|
| 152 |
+
"""Compact citations for the LLM and the response."""
|
| 153 |
+
lines = []
|
| 154 |
+
for i, h in enumerate(hits, start=1):
|
| 155 |
+
title = (h.get("title") or "").strip()
|
| 156 |
+
link = (h.get("link") or "").strip()
|
| 157 |
+
source = (h.get("source") or "").strip()
|
| 158 |
+
snippet = (h.get("snippet") or "").strip()
|
| 159 |
+
lines.append(f"[{i}] {title} — {source}\n{snippet}\n{link}")
|
| 160 |
+
return "\n\n".join(lines)
|
| 161 |
+
|
| 162 |
+
# ----------------------------
|
| 163 |
+
# LLM Calls
|
| 164 |
+
# ----------------------------
|
| 165 |
+
|
| 166 |
+
BASE_SYSTEM_PROMPT = (
|
| 167 |
+
"You are a helpful and precise assistant. Use simple, neutral English. "
|
| 168 |
+
"When sources are provided, synthesize them, highlight clear facts, and include a short 'Sources' list as [1], [2], etc. "
|
| 169 |
+
"If information is uncertain or evolving, state that clearly."
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
def call_openai(system_prompt: str, user_prompt: str) -> str:
|
| 173 |
+
"""OpenAI Python SDK ≥ 1.0.0."""
|
| 174 |
+
if not openai_client:
|
| 175 |
+
raise RuntimeError("OpenAI is not configured.")
|
| 176 |
+
resp = openai_client.chat.completions.create(
|
| 177 |
+
model="gpt-4o-mini",
|
| 178 |
+
messages=[
|
| 179 |
+
{"role": "system", "content": system_prompt},
|
| 180 |
+
{"role": "user", "content": user_prompt}
|
| 181 |
+
],
|
| 182 |
+
temperature=0.2,
|
| 183 |
+
max_tokens=900,
|
| 184 |
+
)
|
| 185 |
+
return (resp.choices[0].message.content or "").strip()
|
| 186 |
+
|
| 187 |
+
def call_cohere(system_prompt: str, user_prompt: str) -> str:
|
| 188 |
+
"""Cohere chat (adjust model if needed)."""
|
| 189 |
+
if not cohere or not COHERE_API_KEY:
|
| 190 |
+
raise RuntimeError("Cohere is not configured.")
|
| 191 |
+
client = cohere.Client(api_key=COHERE_API_KEY)
|
| 192 |
+
resp = client.chat(
|
| 193 |
+
model="command-r-plus",
|
| 194 |
+
messages=[
|
| 195 |
+
{"role": "system", "content": system_prompt},
|
| 196 |
+
{"role": "user", "content": user_prompt}
|
| 197 |
+
],
|
| 198 |
+
temperature=0.2,
|
| 199 |
+
max_tokens=900,
|
| 200 |
+
)
|
| 201 |
+
text = getattr(resp, "text", None) or (getattr(resp, "output_text", None))
|
| 202 |
+
if not text and hasattr(resp, "message") and hasattr(resp.message, "content"):
|
| 203 |
+
parts = resp.message.content
|
| 204 |
+
text = "".join(getattr(p, "text", "") for p in parts)
|
| 205 |
+
return (text or "").strip()
|
| 206 |
+
|
| 207 |
+
def call_llm(system_prompt: str, user_prompt: str) -> str:
|
| 208 |
+
if LLM_PROVIDER == "openai":
|
| 209 |
+
return call_openai(system_prompt, user_prompt)
|
| 210 |
+
elif LLM_PROVIDER == "cohere":
|
| 211 |
+
return call_cohere(system_prompt, user_prompt)
|
| 212 |
+
else:
|
| 213 |
+
raise RuntimeError("Unsupported LLM_PROVIDER")
|
| 214 |
+
|
| 215 |
+
def compose_live_user_prompt(query: str, hits: List[Dict[str, str]]) -> str:
|
| 216 |
+
citation_block = build_citation_block(hits)
|
| 217 |
+
today = datetime.now().strftime("%B %d, %Y")
|
| 218 |
+
return (
|
| 219 |
+
f"User question (time-sensitive): {query}\n"
|
| 220 |
+
f"Date today: {today}\n\n"
|
| 221 |
+
f"You have these top search results. Answer using only what these sources support. "
|
| 222 |
+
f"Be concise and include a 'Sources' section with numbered citations pointing to the links.\n\n"
|
| 223 |
+
f"{citation_block}\n\n"
|
| 224 |
+
f"Now write the answer:"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
def compose_general_user_prompt(query: str) -> str:
|
| 228 |
+
today = datetime.now().strftime("%B %d, %Y")
|
| 229 |
+
return (
|
| 230 |
+
f"User question: {query}\n"
|
| 231 |
+
f"(Answer in simple, neutral English. If facts might have changed after {today}, mention that briefly.)"
|
| 232 |
+
)
|
pytrade.py
CHANGED
|
@@ -15,6 +15,18 @@ import json
|
|
| 15 |
import os
|
| 16 |
import time
|
| 17 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
app = Flask(__name__)
|
| 20 |
|
|
@@ -109,6 +121,61 @@ def analyze_all():
|
|
| 109 |
except Exception as e:
|
| 110 |
return jsonify({"error": str(e)}), 500
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
if __name__ == "__main__":
|
| 113 |
# Default to 5000 locally; on Hugging Face Spaces the platform injects PORT.
|
| 114 |
port = int(os.environ.get("PORT", "5000"))
|
|
|
|
| 15 |
import os
|
| 16 |
import time
|
| 17 |
import requests
|
| 18 |
+
from typing import List, Dict
|
| 19 |
+
from chatbot import (
|
| 20 |
+
normalize_entities,
|
| 21 |
+
needs_live_context,
|
| 22 |
+
pick_is_news,
|
| 23 |
+
serpapi_search,
|
| 24 |
+
compose_live_user_prompt,
|
| 25 |
+
compose_general_user_prompt,
|
| 26 |
+
call_llm,
|
| 27 |
+
BASE_SYSTEM_PROMPT,
|
| 28 |
+
SEARCH_TOPK
|
| 29 |
+
)
|
| 30 |
|
| 31 |
app = Flask(__name__)
|
| 32 |
|
|
|
|
| 121 |
except Exception as e:
|
| 122 |
return jsonify({"error": str(e)}), 500
|
| 123 |
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@app.route("/chat", methods=["POST"])
|
| 127 |
+
def chat():
|
| 128 |
+
"""
|
| 129 |
+
Request JSON:
|
| 130 |
+
{ "message": "your question" }
|
| 131 |
+
or
|
| 132 |
+
{ "question": "your question" }
|
| 133 |
+
|
| 134 |
+
Response JSON:
|
| 135 |
+
{
|
| 136 |
+
"answer": "...",
|
| 137 |
+
"live": true/false,
|
| 138 |
+
"sources": [{title, link, source, snippet}]
|
| 139 |
+
}
|
| 140 |
+
"""
|
| 141 |
+
data = request.get_json(force=True, silent=True) or {}
|
| 142 |
+
message = (data.get("message") or data.get("question") or "").strip()
|
| 143 |
+
|
| 144 |
+
if not message:
|
| 145 |
+
return jsonify({"error": "message or question is required"}), 400
|
| 146 |
+
|
| 147 |
+
# Normalize common aliases (e.g., TCS -> Tata Consultancy Services)
|
| 148 |
+
message = normalize_entities(message)
|
| 149 |
+
|
| 150 |
+
# Decide if this needs live context
|
| 151 |
+
live = needs_live_context(message)
|
| 152 |
+
|
| 153 |
+
hits: List[Dict[str, str]] = []
|
| 154 |
+
if live:
|
| 155 |
+
is_news = pick_is_news(message)
|
| 156 |
+
try:
|
| 157 |
+
hits = serpapi_search(message, is_news=is_news, num=SEARCH_TOPK)
|
| 158 |
+
except Exception:
|
| 159 |
+
hits = []
|
| 160 |
+
live = False
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
if live and hits:
|
| 164 |
+
user_prompt = compose_live_user_prompt(message, hits)
|
| 165 |
+
answer = call_llm(BASE_SYSTEM_PROMPT, user_prompt)
|
| 166 |
+
return jsonify({"answer": answer, "live": True, "sources": hits})
|
| 167 |
+
else:
|
| 168 |
+
user_prompt = compose_general_user_prompt(message)
|
| 169 |
+
answer = call_llm(BASE_SYSTEM_PROMPT, user_prompt)
|
| 170 |
+
return jsonify({"answer": answer, "live": False, "sources": []})
|
| 171 |
+
except Exception as e:
|
| 172 |
+
return jsonify({
|
| 173 |
+
"error": "LLM call failed",
|
| 174 |
+
"details": str(e),
|
| 175 |
+
"live": live,
|
| 176 |
+
"sources": hits
|
| 177 |
+
}), 500
|
| 178 |
+
|
| 179 |
if __name__ == "__main__":
|
| 180 |
# Default to 5000 locally; on Hugging Face Spaces the platform injects PORT.
|
| 181 |
port = int(os.environ.get("PORT", "5000"))
|
requirements.txt
CHANGED
|
@@ -15,3 +15,10 @@ lxml_html_clean
|
|
| 15 |
nltk
|
| 16 |
rapidfuzz
|
| 17 |
gunicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
nltk
|
| 16 |
rapidfuzz
|
| 17 |
gunicorn
|
| 18 |
+
torch
|
| 19 |
+
dotenv
|
| 20 |
+
gunicorn
|
| 21 |
+
torch
|
| 22 |
+
python-dotenv
|
| 23 |
+
openai>=1.0.0
|
| 24 |
+
|