from flask import Flask, request, jsonify from transformers import T5Tokenizer, T5ForConditionalGeneration import torch app = Flask(__name__) # Load model and tokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "AventIQ-AI/t5-stockmarket-qa-chatbot" model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) tokenizer = T5Tokenizer.from_pretrained(model_name) @app.route('/ask', methods=['POST']) def ask(): # Get question from the frontend question = request.json.get('question', '') input_text = "question: " + question input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(input_ids, max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) # Return the answer as a JSON response return jsonify({'answer': answer}) if __name__ == '__main__': app.run(debug=True)