curia / app.py
SovanK's picture
feat: add logo
ab9af50
"""Gradio Space for exploring Curia models and CuriaBench datasets.
This application allows users to:
- Select any available Curia classification head.
- Load the matching CuriaBench test split and sample random images per class.
- Upload custom medical images that match the model's expected orientation.
- Forward images through the selected model head and visualise class probabilities.
The space expects an HF token with access to "raidium" resources to be
provided via the HF_TOKEN environment variable (configure it as a secret when
deploying to Hugging Face Spaces).
"""
from __future__ import annotations
import base64
import random
from typing import Any, Dict, List, Optional, Tuple
import cv2
import gradio as gr
import numpy as np
import pandas as pd
import torch
from datasets import Dataset
from PIL import Image
import traceback
from inference import (
load_curia_dataset,
load_id_to_labels,
infer_image,
)
# ---------------------------------------------------------------------------
# Configuration
# ---------------------------------------------------------------------------
HEAD_OPTIONS: List[Tuple[str, str]] = [
("abdominal-trauma", "Active Extravasation"),
("anatomy-ct", "Anatomy CT"),
("anatomy-mri", "Anatomy MRI"),
("atlas-stroke", "Atlas Stroke"),
("covidx-ct", "COVIDx CT"),
("deep-lesion-site", "Deep Lesion Site"),
("emidec-classification-mask", "EMIDEC Classification"),
("ich", "Intracranial Hemorrhage"),
("ixi", "IXI"),
("kits", "KiTS"),
("kneeMRI", "Knee MRI"),
("luna16-3D", "LUNA16 3D"),
# disable this, as we cannot share the dataset, and they need mask (so no upload)
# ("neural_foraminal_narrowing", "Neural Foraminal Narrowing"),
# ("spinal_canal_stenosis", "Spinal Canal Stenosis"),
# ("subarticular_stenosis", "Subarticular Stenosis"),
("oasis", "OASIS"),
]
# Heads that require masks - custom image upload will be disabled for these
HEADS_REQUIRING_MASK: set[str] = {
"anatomy-ct",
"anatomy-mri",
"deep-lesion-site",
"emidec-classification-mask",
"kits",
"kneeMRI",
"luna16-3D",
"neural_foraminal_narrowing",
"spinal_canal_stenosis",
"subarticular_stenosis",
}
HEADS_3D = {
"oasis",
"luna16-3D",
"kneeMRI",
}
REGRESSION_HEADS = {
"ixi",
}
DATASET_OPTIONS: Dict[str, str] = {
"anatomy-ct": "Anatomy CT (test)",
"anatomy-ct-hard": "Anatomy CT Hard (test)",
"anatomy-mri": "Anatomy MRI (test)",
"covidx-ct": "COVIDx CT (test)",
"deep-lesion-site": "Deep Lesion Site (test)",
"emidec-classification-mask": "EMIDEC Classification Mask (test)",
"ixi": "IXI (test)",
"kits": "KiTS (test)",
"kneeMRI": "Knee MRI (test)",
"luna16-3D": "LUNA16 3D (test)",
"oasis": "OASIS (test)",
}
DEFAULT_DATASET_FOR_HEAD: Dict[str, str] = {
"anatomy-ct": "anatomy-ct",
"anatomy-mri": "anatomy-mri",
"covidx-ct": "covidx-ct",
"deep-lesion-site": "deep-lesion-site",
"emidec-classification-mask": "emidec-classification-mask",
"ixi": "ixi",
"kits": "kits",
"kneeMRI": "kneeMRI",
"luna16-3D": "luna16-3D",
"oasis": "oasis",
}
# Default CT windowing for each dataset
# Format: {"window_level": center, "window_width": width} or None for MRI
# CT values are in Hounsfield Units (HU)
DEFAULT_WINDOWINGS: Dict[str, Optional[Dict[str, int]]] = {
"anatomy-ct": {"window_level": 40, "window_width": 400},
"anatomy-ct-hard": {"window_level": 40, "window_width": 400},
"anatomy-mri": None,
"atlas-stroke": None,
"covidx-ct": {"window_level": -600, "window_width": 1500},
"deep-lesion-site": {"window_level": 40, "window_width": 400},
"emidec-classification-mask": None,
"ich": {"window_level": 40, "window_width": 80},
"ixi": None,
"kits": {"window_level": 40, "window_width": 400},
"kneeMRI": None,
"luna16": {"window_level": -600, "window_width": 1500},
"luna16-3D": {"window_level": -600, "window_width": 1500},
"oasis": None,
}
LOGO_PATH = "Logo horizontal medium copie 4_CREME.png"
CUSTOM_CSS = """
.gr-prose { max-width: 900px; }
#app-hero {
display: flex;
align-items: center;
gap: 2.5rem;
margin-bottom: 1.5rem;
padding-right: 1.5rem;
}
#app-hero .hero-text {
flex: 1;
padding-right: 1rem;
}
#app-hero .hero-text h1 {
font-size: 2.25rem;
margin-bottom: 0.5rem;
}
#app-hero .hero-text p {
margin: 0.25rem 0;
line-height: 1.5;
}
#app-hero .hero-logo img {
max-height: 60px;
width: auto;
display: block;
}
@media (max-width: 768px) {
#app-hero {
flex-direction: column;
text-align: center;
padding-right: 0;
}
#app-hero .hero-text {
padding-right: 0;
}
#app-hero .hero-text h1,
#app-hero .hero-text p {
text-align: center;
}
#app-hero .hero-logo img {
margin: 0 auto 1rem;
}
}
"""
def load_logo_data_uri() -> str:
try:
with open(LOGO_PATH, "rb") as logo_file:
encoded = base64.b64encode(logo_file.read()).decode("ascii")
return f"data:image/png;base64,{encoded}"
except FileNotFoundError:
return ""
LOGO_DATA_URI = load_logo_data_uri()
# ---------------------------------------------------------------------------
# Utility helpers
# ---------------------------------------------------------------------------
def apply_windowing(image: np.ndarray, head: str) -> np.ndarray:
"""Apply CT windowing based on the dataset.
For CT images, applies window level and width transformation.
For MRI images (windowing=None), returns the image unchanged.
Args:
image: Raw image array (e.g., in Hounsfield Units for CT)
subset: Dataset subset name to determine windowing parameters
Returns:
Windowed image array
"""
windowing = DEFAULT_WINDOWINGS.get(head)
# No windowing for MRI or unknown datasets
if windowing is None:
return image
window_level = windowing["window_level"]
window_width = windowing["window_width"]
# Apply CT windowing transformation
# Convert window level/width to min/max values
window_min = window_level - window_width / 2
window_max = window_level + window_width / 2
# Clip and normalize to [0, 1] range
windowed = np.clip(image, window_min, window_max)
windowed = (windowed - window_min) / (window_max - window_min)
return windowed.astype(np.float32)
def to_display_image(image: np.ndarray) -> np.ndarray:
"""Normalise image for display purposes (uint8, 3-channel)."""
# if image is 3D, keep the middle slice
if image.ndim == 3:
gr.Info(f"Image is 3D, we display only the middle slice")
image = image[:, :, image.shape[2] // 2]
arr = np.array(image, copy=True)
if not np.isfinite(arr).all():
arr = np.nan_to_num(arr, nan=0.0)
arr_min = float(arr.min())
arr_max = float(arr.max())
if arr_max - arr_min > 1e-6:
arr = (arr - arr_min) / (arr_max - arr_min)
else:
arr = np.zeros_like(arr)
arr = (arr * 255).clip(0, 255).astype(np.uint8)
if arr.ndim == 2:
arr = np.stack([arr, arr, arr], axis=-1)
return arr
def prepare_mask_tensor(mask: np.ndarray, height: int, width: int) -> Optional[torch.Tensor]:
arr = np.squeeze(mask)
if arr.ndim == 2:
arr = arr.reshape(1, height, width)
else:
if arr.shape[-2:] == (height, width):
arr = arr.reshape(-1, height, width)
elif arr.shape[0] == height and arr.shape[1] == width:
arr = np.transpose(arr, (2, 0, 1))
elif arr.shape[1] == height and arr.shape[2] == width:
arr = arr.reshape(arr.shape[0], height, width)
elif arr.size % (height * width) == 0:
try:
arr = arr.reshape(-1, height, width)
except ValueError:
return None
else:
return None
mask_tensors: List[torch.Tensor] = []
for idx, slice_arr in enumerate(arr):
bool_mask = torch.from_numpy(slice_arr > 0)
if bool_mask.any():
mask_tensors.append(bool_mask)
if not mask_tensors:
return None
stacked = torch.stack(mask_tensors, dim=0).bool()
return stacked
def apply_contour_overlay(
image: np.ndarray,
mask: Any,
thickness: int = 1,
color: Tuple[int, int, int] = (255, 0, 0),
) -> np.ndarray:
"""Draw only the contours of segmentation masks instead of filled masks."""
height, width = image.shape[:2]
mask_tensor = prepare_mask_tensor(mask, height, width)
if mask_tensor is None:
return image
# Work on a copy of the image
output = image.copy()
# Process each mask separately
for idx in range(mask_tensor.shape[0]):
mask_np = mask_tensor[idx].numpy().astype(np.uint8)
# Find contours
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the image
cv2.drawContours(output, contours, -1, color, thickness)
return output
def render_image_with_mask_info(image: np.ndarray, mask: Any) -> np.ndarray:
display = to_display_image(image)
if mask is None:
return display
try:
overlaid = apply_contour_overlay(display, mask)
return overlaid
except Exception:
gr.Warning("Mask provided but could not be visualised.")
return display
def pick_random_indices(dataset: Dataset, target: Optional[int]) -> int:
if "target" not in dataset.column_names:
return random.randrange(len(dataset))
if target is None:
return random.randrange(len(dataset))
indices = [idx for idx, value in enumerate(dataset["target"]) if value == target]
if not indices:
return random.randrange(len(dataset))
return random.choice(indices)
# ---------------------------------------------------------------------------
# Gradio callbacks
# ---------------------------------------------------------------------------
def update_dataset_display(head: str) -> str:
"""Update the dataset name display based on the selected head."""
dataset_key = DEFAULT_DATASET_FOR_HEAD.get(head)
if dataset_key:
dataset_label = DATASET_OPTIONS.get(dataset_key, dataset_key)
return f"**Dataset:** {dataset_label}"
return "**Dataset:** not available"
def update_upload_component_state(head: str) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""Disable upload component for heads that require masks."""
if head in HEADS_REQUIRING_MASK:
info_update = gr.update(
value="⚠️ Custom image upload is disabled for this task because it requires a mask from the dataset.",
visible=True,
)
upload_update = gr.update(interactive=False)
return info_update, upload_update
elif head in HEADS_3D:
info_update = gr.update(
value="⚠️ Custom image upload is disabled for this task because it requires a 3D image.",
visible=True,
)
upload_update = gr.update(interactive=False)
return info_update, upload_update
info_update = gr.update(visible=False)
upload_update = gr.update(interactive=True)
return info_update, upload_update
def load_dataset_metadata(head: str) -> Tuple[Dict[str, Any], str, Dict[str, Any]]:
"""Load dataset metadata based on the selected head."""
subset = DEFAULT_DATASET_FOR_HEAD.get(head)
if not subset:
dropdown = gr.update(choices=["Random"], value="Random", interactive=False)
button = gr.update(interactive=False)
return dropdown, "No dataset found for this head.", button
# Load class labels from id_to_labels.json
id2label = load_id_to_labels().get(head, {})
try:
dataset = load_curia_dataset(subset)
except Exception as exc: # pragma: no cover - surfaced in UI
dropdown = gr.update(choices=["Random"], value="Random", interactive=False)
button = gr.update(interactive=False)
return dropdown, f"Failed to load dataset: {exc}", button
# Build dropdown options from id_to_labels.json
classes = sorted(id2label.keys())
options = [
"Random",
*[f"{cls_id}: {id2label[cls_id]}" for cls_id in classes],
]
dropdown = gr.update(choices=options, value="Random", interactive=True)
button = gr.update(interactive=True)
return dropdown, f"Loaded {subset} ({len(dataset)} test samples)", button
def parse_target_selection(selection: str) -> Optional[int]:
if not selection or selection == "Random":
return None
try:
target_str = selection.split(":", 1)[0].strip()
return int(target_str)
except (ValueError, AttributeError):
return None
def sample_dataset_example(
subset: str,
target_id: Optional[int],
) -> Tuple[np.ndarray, Dict[str, Any]]:
dataset = load_curia_dataset(subset)
index = pick_random_indices(dataset, target_id)
record = dataset[index]
image = np.array(record["image"]).astype(np.float32)
mask_array = record.get("mask")
meta = {
"index": index,
"target": record.get("target"),
"mask": mask_array,
}
return image, meta
def load_dataset_sample(
target_selection: str,
head: str,
) -> Tuple[
Optional[np.ndarray],
str,
Dict[str, Any],
Dict[str, Any],
Optional[Dict[str, Any]],
]:
"""Load a dataset sample based on the selected head."""
subset = DEFAULT_DATASET_FOR_HEAD.get(head)
if not subset:
gr.Warning("No dataset found for this head.")
return None, "", gr.update(visible=False), gr.update(visible=False), None
try:
target_id = parse_target_selection(target_selection)
image, meta = sample_dataset_example(subset, target_id)
# Apply windowing only for display, keep raw image for model inference
windowed_image = apply_windowing(image, subset)
display = to_display_image(windowed_image)
if meta.get("mask") is not None:
display = apply_contour_overlay(display, meta.get("mask"))
target = meta.get("target")
# Generate ground truth display
ground_truth_update = gr.update(value="")
if target is not None:
# Use id_to_labels.json mapping
id2label = load_id_to_labels().get(head, {})
label_name = id2label.get(target, str(target))
ground_truth_update = gr.update(value=f"{label_name} (class {target})", visible=True)
return (
display,
"", # Reset prediction text
gr.update(visible=False),
ground_truth_update,
{"image": image, "mask": meta.get("mask")}, # Store raw image for inference
)
except Exception as exc: # pragma: no cover - surfaced in UI
gr.Warning(f"Failed to load sample: {exc}")
return None, "", gr.update(visible=False), gr.update(visible=False), None
def format_probabilities(probs: torch.Tensor, id2label: Dict[int, str]) -> pd.DataFrame:
"""Return a dataframe sorted by probability desc."""
values = probs.detach().cpu().numpy()
rows = [
{"class_id": idx, "label": id2label.get(idx, str(idx)), "probability": float(val)}
for idx, val in enumerate(values)
]
df = pd.DataFrame(rows)
df.sort_values("probability", ascending=False, inplace=True)
return df
def run_inference(
image_state: Optional[Dict[str, Any]],
head: str,
) -> Tuple[str, Dict[str, Any]]:
if not image_state or "image" not in image_state:
return "Load a dataset sample or upload an image first.", gr.update(visible=False)
try:
image = image_state["image"]
output = infer_image(image, head, image_state.get("mask"), return_probs=head not in REGRESSION_HEADS)
if head in REGRESSION_HEADS:
return f"{output:.1f}", gr.update(visible=False)
# Use id_to_labels.json mapping, fall back to model config if not available
id2label = load_id_to_labels().get(head, {})
df = format_probabilities(output, id2label)
top_row = df.iloc[0]
prediction = f"{top_row['label']} (p={top_row['probability']:.3f})"
result_text = prediction
return result_text, gr.update(visible=True, value=df)
except Exception as exc: # pragma: no cover - surfaced in UI
traceback.print_exc()
return f"Failed to run inference: {exc}", gr.update(visible=False)
def handle_upload_preview(
image: np.ndarray | Image.Image | None,
head: str,
) -> Tuple[Optional[np.ndarray], str, str, pd.DataFrame, Dict[str, Any], Optional[Dict[str, Any]]]:
"""Handle image upload preview, deriving dataset from head."""
if image is None:
return None, "Please upload an image.", "", pd.DataFrame(), gr.update(visible=False), None
try:
np_image = np.array(image).astype(np.float32)
if np_image.ndim == 3: # RGB image
# convert to grayscale
np_image = np_image.mean(axis=-1)
# Apply windowing only for display, keep raw image for model inference
display = to_display_image(np_image)
return (
display,
"Image uploaded. Computing predictions...",
"",
pd.DataFrame(),
gr.update(value=""),
{"image": np_image, "mask": None},
)
except Exception as exc: # pragma: no cover - surfaced in UI
return None, f"Failed to load image: {exc}", "", pd.DataFrame(), gr.update(value=""), None
# ---------------------------------------------------------------------------
# Interface definition
# ---------------------------------------------------------------------------
def build_demo() -> gr.Blocks:
with gr.Blocks(css=CUSTOM_CSS) as demo:
logo_block = ""
if LOGO_DATA_URI:
logo_block = f'<div class="hero-logo"><img src="{LOGO_DATA_URI}" alt="Curia logo" /></div>'
hero_html = f"""
<div id=\"app-hero\">
{logo_block}
<div class=\"hero-text\">
<h1>Curia Model Playground</h1>
<p>Experiment with the multi-head Curia models on CuriaBench evaluation data or your own medical images.</p>
<p>Each head expects a single 2D slice in the Curia-defined plane/orientation (PL axial, IL coronal, IP sagittal) with raw Hounsfield units (CT) or normalised MRI intensities.</p>
</div>
</div>
"""
gr.HTML(hero_html)
default_head = "kits"
head_dropdown = gr.Dropdown(
label="Model head",
choices=[(label, key) for key, label in HEAD_OPTIONS],
value=default_head,
)
# gr.Markdown("---")
with gr.Row():
with gr.Column():
# gr.Markdown("### Load dataset sample")
dataset_display = gr.Markdown(f"**Dataset:** {DATASET_OPTIONS.get(DEFAULT_DATASET_FOR_HEAD.get(default_head, ''), 'Unknown')}")
dataset_status = gr.Markdown("Select a model head to load class metadata.")
class_dropdown = gr.Dropdown(label="Target class filter", choices=["Random"], value="Random")
dataset_btn = gr.Button("Load dataset sample")
with gr.Column():
gr.Markdown("### Upload custom image")
# Set initial state based on default head
initial_requires_mask = default_head in HEADS_REQUIRING_MASK
upload_info_text = gr.Markdown(
value=(
"⚠️ Custom image upload is disabled for this task because it requires a mask from the dataset."
if initial_requires_mask
else ""
),
visible=initial_requires_mask,
)
upload_component = gr.Image(
label="Upload image",
image_mode="L",
type="numpy",
interactive=not initial_requires_mask,
)
gr.Markdown("---")
status_text = gr.Markdown()
with gr.Row():
with gr.Column():
image_display = gr.Image(label="Image", interactive=False, type="numpy")
with gr.Column():
ground_truth_display = gr.Textbox(label="Ground Truth", interactive=False)
main_prediction = gr.Textbox(label="Prediction", value="", interactive=False)
prediction_probs = gr.Dataframe(headers=["class_id", "label", "probability"], visible=False)
image_state = gr.State()
# Event wiring
# Initialize on page load
demo.load(
fn=load_dataset_metadata,
inputs=[head_dropdown],
outputs=[class_dropdown, dataset_status, dataset_btn],
)
head_dropdown.change(
fn=update_dataset_display,
inputs=[head_dropdown],
outputs=[dataset_display],
).then(
fn=update_upload_component_state,
inputs=[head_dropdown],
outputs=[upload_info_text, upload_component],
).then(
fn=load_dataset_metadata,
inputs=[head_dropdown],
outputs=[class_dropdown, dataset_status, dataset_btn],
)
dataset_btn.click(
fn=load_dataset_sample,
inputs=[class_dropdown, head_dropdown],
outputs=[
image_display,
main_prediction,
prediction_probs,
ground_truth_display,
image_state,
],
).then(
fn=run_inference,
inputs=[image_state, head_dropdown],
outputs=[main_prediction, prediction_probs],
)
upload_component.upload(
fn=handle_upload_preview,
inputs=[upload_component, head_dropdown],
outputs=[
image_display,
status_text,
main_prediction,
prediction_probs,
ground_truth_display,
image_state,
],
).then(
fn=run_inference,
inputs=[image_state, head_dropdown],
outputs=[main_prediction, prediction_probs],
)
return demo
demo = build_demo()
if __name__ == "__main__":
demo.launch()