DeepSeek / app.py
redhairedshanks1's picture
Update app.py
1612fe8 verified
import os
import re
import sys
import traceback
import gradio as gr
from huggingface_hub import (
login,
HfApi,
hf_hub_download,
whoami,
)
from llama_cpp import Llama
from transformers import AutoTokenizer
"""
Environment variables you can set in your Space (Settings -> Variables & secrets):
Required (pick one of these approaches):
- GGUF_REPO: The Hugging Face repo that contains your .gguf files
- GGUF_FILE: The specific .gguf filename to load from that repo
Optional (recommended):
- MODEL_ID: Base model repo to pull the tokenizer/chat template from.
Use the matching family for your quant:
- Qwen family: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B or -Qwen-7B
- Llama family: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
If MODEL_ID is not set, we will attempt to guess it from GGUF_REPO.
Other optional env vars:
- HF_TOKEN: If your repo is gated/private, add this as a Space secret (read scope).
- PREFER_FAMILY: "qwen" or "llama" (only used if we need to guess MODEL_ID). Default: qwen
- PREFER_SIZE: "1.5b", "7b", or "8b" (only used if we need to guess MODEL_ID). Default: 1.5b
- N_CTX: context window (default 4096)
- N_THREADS: CPU threads (default: half your CPU cores, at least 1)
- N_BATCH: batch size (default 128)
"""
# --------------------
# Auth (optional)
# --------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
try:
login(HF_TOKEN)
try:
user = whoami().get("name", "ok")
print(f"[auth] Logged into Hugging Face as: {user}")
except Exception:
print("[auth] Logged in (could not fetch user name).")
except Exception as e:
print(f"[auth] Failed to login with HF_TOKEN: {e}")
# --------------------
# Config / Defaults
# --------------------
GGUF_REPO = os.getenv("GGUF_REPO", "").strip()
GGUF_FILE = os.getenv("GGUF_FILE", "").strip()
PREFER_FAMILY = os.getenv("PREFER_FAMILY", "qwen").lower()
PREFER_SIZE = os.getenv("PREFER_SIZE", "1.5b").lower()
# Runtime knobs
def _default_threads():
try:
cores = os.cpu_count() or 2
return max(1, cores // 2) # be gentle on free CPU
except Exception:
return 1
N_CTX = int(os.getenv("N_CTX", "4096"))
N_THREADS = int(os.getenv("N_THREADS", str(_default_threads())))
N_BATCH = int(os.getenv("N_BATCH", "128"))
# --------------------
# Helpers
# --------------------
api = HfApi()
def repo_exists(repo_id: str) -> bool:
try:
api.model_info(repo_id)
return True
except Exception:
return False
def pick_q4_file(repo_id: str) -> str:
"""Choose a reasonable 4-bit GGUF from a repo (prefer Q4_K_M, then Q4_0)."""
info = api.model_info(repo_id)
ggufs = [s.rfilename for s in info.siblings if s.rfilename.lower().endswith(".gguf")]
# Prefer Q4_K_M, then any Q4, then Q3 as last resort
priority = []
for f in ggufs:
fl = f.lower()
score = 0
if "q4_k_m" in fl:
score = 100
elif "q4_k_s" in fl or "q4_k_l" in fl or "q4_k" in fl:
score = 95
elif "q4_0" in fl or "q4" in fl:
score = 90
elif "q3_k_m" in fl or "q3" in fl:
score = 70
else:
score = 10
priority.append((score, f))
if not priority:
raise FileNotFoundError(f"No .gguf files found in {repo_id}")
priority.sort(reverse=True, key=lambda x: x[0])
chosen = priority[0][1]
return chosen
def guess_model_id_from_repo(repo_id: str) -> str:
"""Guess a matching tokenizer/chat-template model based on the GGUF repo name."""
rid = repo_id.lower()
# Family
if "qwen" in rid or PREFER_FAMILY == "qwen":
# Size
if "1.5" in rid or "1_5" in rid or PREFER_SIZE == "1.5b":
return "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
elif "7b" in rid or PREFER_SIZE == "7b":
return "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
else:
return "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
# Llama family
if "llama" in rid or PREFER_FAMILY == "llama":
return "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
# Fallback
return "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
def ensure_model_source(repo_id: str | None, filename: str | None) -> tuple[str, str]:
"""
Ensure we have a valid GGUF repo + file.
- If both provided, verify they exist.
- If only repo provided, pick a reasonable Q4 file.
- If none provided, raise with a helpful message.
"""
if repo_id and filename:
try:
api.model_info(repo_id) # raises if missing or no access
except Exception as e:
raise FileNotFoundError(
f"Repo not accessible: {repo_id}\n{e}\n"
"Check the repo id spelling, your HF token, and license access."
)
# Now check the file exists in the repo
info = api.model_info(repo_id)
files = {s.rfilename for s in info.siblings}
if filename not in files:
# Try case-insensitive match
lower_map = {s.rfilename.lower(): s.rfilename for s in info.siblings}
if filename.lower() in lower_map:
filename = lower_map[filename.lower()]
else:
raise FileNotFoundError(
f"File not found in repo: {filename}\n"
f"Available gguf files: {[f for f in files if f.lower().endswith('.gguf')]}"
)
return repo_id, filename
if repo_id and not filename:
return repo_id, pick_q4_file(repo_id)
raise ValueError(
"No GGUF_REPO/GGUF_FILE provided. Set them in your Space Variables.\n"
"Examples you can try (you must verify these exist and accept access if gated):\n"
" - GGUF_REPO = TheBloke/DeepSeek-R1-Distill-Qwen-7B-GGUF\n"
" GGUF_FILE = deepseek-r1-distill-qwen-7b.Q4_K_M.gguf\n"
" - GGUF_REPO = bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF\n"
" GGUF_FILE = deepseek-r1-distill-qwen-1.5b.Q4_K_M.gguf\n"
" - GGUF_REPO = MaziyarPanahi/DeepSeek-R1-Distill-Llama-8B-GGUF\n"
" GGUF_FILE = deepseek-r1-distill-llama-8b.Q4_K_M.gguf\n"
)
def build_tokenizer(model_id: str) -> AutoTokenizer:
print(f"[tokenizer] Loading tokenizer/chat template from {model_id}")
tok = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
return tok
def apply_template(tokenizer: AutoTokenizer, history, message: str) -> str:
# history: list of [user, assistant]
msgs = []
for u, a in history:
if u:
msgs.append({"role": "user", "content": u})
if a:
msgs.append({"role": "assistant", "content": a})
msgs.append({"role": "user", "content": message})
return tokenizer.apply_chat_template(
msgs, tokenize=False, add_generation_prompt=True
)
def strip_reasoning(text: str) -> str:
# Hide DeepSeek-style reasoning tags if present
return re.sub(
r"<\|begin_of_thought\|>.*?<\|end_of_thought\|>",
"",
text,
flags=re.DOTALL,
)
# --------------------
# Resolve model + file
# --------------------
try:
GGUF_REPO, GGUF_FILE = ensure_model_source(GGUF_REPO, GGUF_FILE)
print(f"[gguf] Using repo: {GGUF_REPO}")
print(f"[gguf] Using file: {GGUF_FILE}")
except Exception as e:
# Fail fast with a clear error; Gradio will show logs
print("[startup] Failed to resolve GGUF model source:")
print(e)
traceback.print_exc()
# Provide a minimal dummy UI to show the error instead of crashing Space build
def _error_ui():
return gr.Markdown(
f"Cannot start: {e}\n\n"
"Go to Settings → Variables and set GGUF_REPO and GGUF_FILE to a valid GGUF."
)
with gr.Blocks() as demo:
gr.Markdown("# DeepSeek R1 Distill (CPU, GGUF)")
_error_ui()
if __name__ == "__main__":
demo.launch()
sys.exit(0)
# Guess MODEL_ID if not provided
MODEL_ID = os.getenv("MODEL_ID", "").strip()
if not MODEL_ID:
MODEL_ID = guess_model_id_from_repo(GGUF_REPO)
# --------------------
# Download and load
# --------------------
try:
# Download exact file; raises if not found or no access
print(f"[download] Fetching {GGUF_FILE} from {GGUF_REPO} ...")
model_path = hf_hub_download(repo_id=GGUF_REPO, filename=GGUF_FILE)
print(f"[download] File ready at: {model_path}")
except Exception as e:
print("[download] Failed to download the GGUF file:")
print(e)
traceback.print_exc()
# Same graceful error UI
def _error_ui():
return gr.Markdown(
f"Download failed: {e}\n\n"
"Check that GGUF_REPO and GGUF_FILE are correct and your HF_TOKEN has access."
)
with gr.Blocks() as demo:
gr.Markdown("# DeepSeek R1 Distill (CPU, GGUF)")
_error_ui()
if __name__ == "__main__":
demo.launch()
sys.exit(0)
# Load tokenizer for chat template
try:
tokenizer = build_tokenizer(MODEL_ID)
except Exception as e:
print("[tokenizer] Failed to load tokenizer/chat template:")
print(e)
traceback.print_exc()
# Still try to continue with a naive prompt if tokenizer fails
tokenizer = None
def naive_template(history, message):
# Simple ChatML-like format
parts = []
for u, a in history:
if u:
parts.append(f"<|im_start|>user\n{u}\n<|im_end|>")
if a:
parts.append(f"<|im_start|>assistant\n{a}\n<|im_end|>")
parts.append(f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n")
return "\n".join(parts)
def make_prompt(history, message):
if tokenizer is not None:
return apply_template(tokenizer, history, message)
return naive_template(history, message) # type: ignore[name-defined]
# Load llama.cpp
try:
llm = Llama(
model_path=model_path,
n_ctx=N_CTX,
n_threads=N_THREADS,
n_batch=N_BATCH,
n_gpu_layers=0, # CPU Space
verbose=False,
)
print("[llama] Model loaded.")
except Exception as e:
print("[llama] Failed to load llama.cpp with the downloaded GGUF:")
print(e)
traceback.print_exc()
def _error_ui():
return gr.Markdown(f"Failed to load model: {e}")
with gr.Blocks() as demo:
gr.Markdown("# DeepSeek R1 Distill (CPU, GGUF)")
_error_ui()
if __name__ == "__main__":
demo.launch()
sys.exit(0)
# --------------------
# Gradio app
# --------------------
def chat_fn(message, history, max_new_tokens, temperature, top_p, show_reasoning):
try:
prompt = make_prompt(history, message)
# Common stop markers; eos from tokenizer if available
stops = ["<|eot_id|>", "<|im_end|>", "<|end_of_text|>"]
try:
if tokenizer is not None and getattr(tokenizer, "eos_token", None):
eos = tokenizer.eos_token
if eos and eos not in stops:
stops.append(eos)
except Exception:
pass
stream = llm(
prompt,
max_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
stop=stops,
stream=True,
)
raw = ""
for part in stream:
delta = part["choices"][0]["text"]
raw += delta
yield raw if show_reasoning else strip_reasoning(raw)
except Exception as e:
err = f"[error] {type(e).__name__}: {e}"
yield err
header_md = f"""
### DeepSeek R1 Distill (CPU, GGUF)
Loaded:
- GGUF_REPO: `{GGUF_REPO}`
- GGUF_FILE: `{GGUF_FILE}`
- Chat template from: `{MODEL_ID}`
- n_ctx={N_CTX}, n_threads={N_THREADS}, n_batch={N_BATCH}
Tip: If you see a 404/403 at startup, set GGUF_REPO/GGUF_FILE correctly and ensure HF_TOKEN has access.
"""
demo = gr.ChatInterface(
fn=chat_fn,
additional_inputs=[
gr.Slider(64, 2048, value=512, step=32, label="Max new tokens"),
gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p"),
gr.Checkbox(label="Show reasoning", value=False),
],
title="DeepSeek R1 Distill (CPU, GGUF)",
description=header_md,
examples=[
"Prove that the sum of two even numbers is even.",
"A train leaves at 3 PM at 60 km/h. Another at 4 PM at 80 km/h. When will the second catch up?",
],
)
if __name__ == "__main__":
demo.launch()