Spaces:
Sleeping
Sleeping
Oscar Wang
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,21 @@
|
|
| 1 |
-
import
|
| 2 |
-
import yfinance as yf
|
| 3 |
-
import plotly.graph_objects as go
|
| 4 |
-
from statsmodels.tsa.arima.model import ARIMA
|
| 5 |
import pandas as pd
|
| 6 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 10 |
|
| 11 |
-
def
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
elif period == '5d':
|
| 18 |
-
data = eth.history(period="5d", interval="15m")
|
| 19 |
-
predict_steps = 96 # Next 24 hours
|
| 20 |
-
freq = '15min' # 15 minutes frequency
|
| 21 |
-
elif period == '1wk':
|
| 22 |
-
data = eth.history(period="1wk", interval="30m")
|
| 23 |
-
predict_steps = 336 # Next 7 days
|
| 24 |
-
freq = '30min' # 30 minutes frequency
|
| 25 |
-
elif period == '1mo':
|
| 26 |
-
data = eth.history(period="1mo", interval="1h")
|
| 27 |
-
predict_steps = 720 # Next 30 days
|
| 28 |
-
freq = 'H' # Hourly frequency
|
| 29 |
-
else:
|
| 30 |
-
logging.error("Invalid period specified.")
|
| 31 |
-
return None, None, None
|
| 32 |
-
|
| 33 |
-
data.index = pd.DatetimeIndex(data.index)
|
| 34 |
-
data = data.asfreq(freq) # Ensure the data has a consistent frequency
|
| 35 |
logging.info(f"Fetched {len(data)} data points for the period {period}.")
|
| 36 |
-
return data
|
| 37 |
|
| 38 |
def make_predictions(data, predict_steps, freq):
|
| 39 |
if data is None or data.empty:
|
|
@@ -41,6 +23,12 @@ def make_predictions(data, predict_steps, freq):
|
|
| 41 |
return None
|
| 42 |
|
| 43 |
logging.info(f"Starting model training with {len(data)} data points...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
model = ARIMA(data['Close'], order=(5, 1, 0))
|
| 46 |
model_fit = model.fit()
|
|
@@ -48,21 +36,20 @@ def make_predictions(data, predict_steps, freq):
|
|
| 48 |
except Exception as e:
|
| 49 |
logging.error(f"Model training failed: {e}")
|
| 50 |
return None
|
| 51 |
-
|
| 52 |
logging.info("Model training completed.")
|
| 53 |
-
|
| 54 |
logging.info("Generating predictions...")
|
| 55 |
try:
|
| 56 |
forecast = model_fit.forecast(steps=predict_steps)
|
|
|
|
|
|
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
logging.error(f"Prediction generation failed: {e}")
|
| 59 |
return None
|
| 60 |
|
| 61 |
-
|
| 62 |
-
logging.error("Generated predictions contain NaN values.")
|
| 63 |
-
return None
|
| 64 |
-
|
| 65 |
-
future_dates = pd.date_range(start=data.index[-1], periods=predict_steps+1, freq=freq, inclusive='right')
|
| 66 |
forecast_df = pd.DataFrame(forecast, index=future_dates[1:], columns=['Prediction'])
|
| 67 |
|
| 68 |
logging.info(f"Forecast Data:\n{forecast_df.head()}")
|
|
@@ -70,34 +57,38 @@ def make_predictions(data, predict_steps, freq):
|
|
| 70 |
|
| 71 |
return forecast_df
|
| 72 |
|
| 73 |
-
def plot_eth(period):
|
| 74 |
-
data
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
forecast_df = make_predictions(data, predict_steps, freq)
|
| 80 |
-
if forecast_df is None
|
| 81 |
logging.error("Failed to generate predictions.")
|
| 82 |
return None
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
| 89 |
logging.info("Plotting completed.")
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
def refresh_predictions(period):
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
period = gr.Radio(["1d", "5d", "1wk", "1mo"], label="Select Period")
|
| 97 |
-
plot = gr.Plot()
|
| 98 |
-
refresh_button = gr.Button("Refresh Predictions and Prices")
|
| 99 |
-
|
| 100 |
-
period.change(fn=plot_eth, inputs=period, outputs=plot)
|
| 101 |
-
refresh_button.click(fn=refresh_predictions, inputs=period, outputs=plot)
|
| 102 |
-
|
| 103 |
iface.launch()
|
|
|
|
| 1 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import logging
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from statsmodels.tsa.arima.model import ARIMA
|
| 6 |
+
import yfinance as yf
|
| 7 |
+
import gradio as gr
|
| 8 |
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 10 |
|
| 11 |
+
def fetch_data(period='1d'):
|
| 12 |
+
logging.info(f"Fetching data for the period {period}...")
|
| 13 |
+
data = yf.download(tickers='ETH-USD', period=period, interval='1m')
|
| 14 |
+
if data.empty:
|
| 15 |
+
logging.error("No data fetched. Check the period or ticker symbol.")
|
| 16 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
logging.info(f"Fetched {len(data)} data points for the period {period}.")
|
| 18 |
+
return data
|
| 19 |
|
| 20 |
def make_predictions(data, predict_steps, freq):
|
| 21 |
if data is None or data.empty:
|
|
|
|
| 23 |
return None
|
| 24 |
|
| 25 |
logging.info(f"Starting model training with {len(data)} data points...")
|
| 26 |
+
|
| 27 |
+
# Check for NaN values in the data
|
| 28 |
+
if data['Close'].isna().any():
|
| 29 |
+
logging.error("Data contains NaN values. Please clean the data before model training.")
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
try:
|
| 33 |
model = ARIMA(data['Close'], order=(5, 1, 0))
|
| 34 |
model_fit = model.fit()
|
|
|
|
| 36 |
except Exception as e:
|
| 37 |
logging.error(f"Model training failed: {e}")
|
| 38 |
return None
|
| 39 |
+
|
| 40 |
logging.info("Model training completed.")
|
| 41 |
+
|
| 42 |
logging.info("Generating predictions...")
|
| 43 |
try:
|
| 44 |
forecast = model_fit.forecast(steps=predict_steps)
|
| 45 |
+
if np.isnan(forecast).any():
|
| 46 |
+
logging.error("Generated predictions contain NaN values. Model might be improperly configured.")
|
| 47 |
+
return None
|
| 48 |
except Exception as e:
|
| 49 |
logging.error(f"Prediction generation failed: {e}")
|
| 50 |
return None
|
| 51 |
|
| 52 |
+
future_dates = pd.date_range(start=data.index[-1], periods=predict_steps + 1, freq=freq, inclusive='right')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
forecast_df = pd.DataFrame(forecast, index=future_dates[1:], columns=['Prediction'])
|
| 54 |
|
| 55 |
logging.info(f"Forecast Data:\n{forecast_df.head()}")
|
|
|
|
| 57 |
|
| 58 |
return forecast_df
|
| 59 |
|
| 60 |
+
def plot_eth(period='1d'):
|
| 61 |
+
data = fetch_data(period)
|
| 62 |
+
predict_steps = 5 # Modify as needed
|
| 63 |
+
freq = 'T' # 'T' stands for minutes
|
| 64 |
+
|
|
|
|
| 65 |
forecast_df = make_predictions(data, predict_steps, freq)
|
| 66 |
+
if forecast_df is None:
|
| 67 |
logging.error("Failed to generate predictions.")
|
| 68 |
return None
|
| 69 |
|
| 70 |
+
plt.figure(figsize=(10, 5))
|
| 71 |
+
plt.plot(data['Close'], label='Actual ETH Price')
|
| 72 |
+
plt.plot(forecast_df['Prediction'], label='Forecasted ETH Price', linestyle='dotted', color='orange')
|
| 73 |
+
plt.title('ETH Price Prediction')
|
| 74 |
+
plt.xlabel('Time')
|
| 75 |
+
plt.ylabel('Price (USD)')
|
| 76 |
+
plt.legend()
|
| 77 |
+
plt.grid(True)
|
| 78 |
+
plt.tight_layout()
|
| 79 |
|
| 80 |
+
# Save the plot to a file
|
| 81 |
+
plot_filename = '/home/user/app/eth_price_prediction.png'
|
| 82 |
+
plt.savefig(plot_filename)
|
| 83 |
logging.info("Plotting completed.")
|
| 84 |
+
|
| 85 |
+
return plot_filename
|
| 86 |
|
| 87 |
def refresh_predictions(period):
|
| 88 |
+
plot_filename = plot_eth(period)
|
| 89 |
+
if plot_filename is None:
|
| 90 |
+
return "Error in generating plot."
|
| 91 |
+
return plot_filename
|
| 92 |
|
| 93 |
+
iface = gr.Interface(fn=refresh_predictions, inputs="text", outputs="image", live=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
iface.launch()
|