Spaces:
Runtime error
Runtime error
Added liBot in Gradio form
Browse files- liBotGradio.py +290 -0
liBotGradio.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from docx import Document
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import os
|
| 7 |
+
import csv
|
| 8 |
+
import time
|
| 9 |
+
import pickle
|
| 10 |
+
import logging
|
| 11 |
+
from nltk.tokenize import word_tokenize
|
| 12 |
+
from nltk.corpus import stopwords
|
| 13 |
+
import string
|
| 14 |
+
from selenium import webdriver
|
| 15 |
+
from selenium.webdriver.common.by import By
|
| 16 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
| 17 |
+
from selenium.webdriver.support import expected_conditions as EC
|
| 18 |
+
from selenium.common.exceptions import NoSuchElementException, TimeoutException
|
| 19 |
+
|
| 20 |
+
class LinkedInBot:
|
| 21 |
+
def __init__(self, delay=5):
|
| 22 |
+
if not os.path.exists("data"):
|
| 23 |
+
os.makedirs("data")
|
| 24 |
+
self.delay = delay
|
| 25 |
+
self.driver = webdriver.Chrome()
|
| 26 |
+
|
| 27 |
+
def login(self, email, password):
|
| 28 |
+
"""Go to LinkedIn and login"""
|
| 29 |
+
self.driver.maximize_window()
|
| 30 |
+
self.driver.get('https://www.linkedin.com/login')
|
| 31 |
+
self.driver.find_element(By.ID, 'username').send_keys(email)
|
| 32 |
+
self.driver.find_element(By.ID, 'password').send_keys(password)
|
| 33 |
+
self.driver.find_element(By.XPATH, "//button[@type='submit']").click()
|
| 34 |
+
|
| 35 |
+
def save_cookie(self, path):
|
| 36 |
+
with open(path, 'wb') as filehandler:
|
| 37 |
+
pickle.dump(self.driver.get_cookies(), filehandler)
|
| 38 |
+
|
| 39 |
+
def load_cookie(self, path):
|
| 40 |
+
with open(path, 'rb') as cookiesfile:
|
| 41 |
+
cookies = pickle.load(cookiesfile)
|
| 42 |
+
for cookie in cookies:
|
| 43 |
+
self.driver.add_cookie(cookie)
|
| 44 |
+
|
| 45 |
+
def search_linkedin(self, keywords, location, date_posted):
|
| 46 |
+
"""Enter keywords into the search bar"""
|
| 47 |
+
self.driver.get("https://www.linkedin.com/jobs/")
|
| 48 |
+
self.driver.get(f"https://www.linkedin.com/jobs/search/?keywords={keywords}&location={location}&f_TPR={date_posted}")
|
| 49 |
+
|
| 50 |
+
def wait(self, by=By.ID, text=None, t_delay=None, max_retries=3):
|
| 51 |
+
"""Wait until a specific element is present on the page."""
|
| 52 |
+
delay = self.delay if t_delay is None else t_delay
|
| 53 |
+
retries = 0
|
| 54 |
+
while retries < max_retries:
|
| 55 |
+
try:
|
| 56 |
+
WebDriverWait(self.driver, delay).until(EC.presence_of_element_located((by, text)))
|
| 57 |
+
return # Element found, exit the loop
|
| 58 |
+
except TimeoutException:
|
| 59 |
+
retries += 1
|
| 60 |
+
logging.warning(f"Element not found, retrying... ({retries}/{max_retries})")
|
| 61 |
+
time.sleep(delay) # Wait before retrying
|
| 62 |
+
logging.error("Element not found after retries.")
|
| 63 |
+
|
| 64 |
+
def scroll_to(self, job_list_item):
|
| 65 |
+
"""Scroll to the list item in the column and click on it."""
|
| 66 |
+
self.driver.execute_script("arguments[0].scrollIntoView();", job_list_item)
|
| 67 |
+
job_list_item.click()
|
| 68 |
+
|
| 69 |
+
def extract_additional_details(self, job):
|
| 70 |
+
"""Extracts additional details like company size, position level, salary, job type, industry, and skills if available."""
|
| 71 |
+
company_size = None
|
| 72 |
+
position_level = None
|
| 73 |
+
salary = None
|
| 74 |
+
job_type = None
|
| 75 |
+
industry = None
|
| 76 |
+
skills = None
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
additional_info = job.find_element(By.CLASS_NAME, "job-details-jobs-unified-top-card__job-insight")
|
| 80 |
+
|
| 81 |
+
# Extract salary
|
| 82 |
+
salary_element = additional_info.find_element(By.XPATH, ".//span[contains(@class, 'job-details-jobs-unified-top-card__job-insight-view-model-secondary')]")
|
| 83 |
+
salary = salary_element.text.strip()
|
| 84 |
+
|
| 85 |
+
# Extract job type, position level, and industry
|
| 86 |
+
for span in additional_info.find_elements(By.XPATH, ".//span[contains(@class, 'job-details-jobs-unified-top-card__job-insight-view-model-secondary')]"):
|
| 87 |
+
text = span.text.strip()
|
| 88 |
+
if "Hybrid" in text:
|
| 89 |
+
job_type = text
|
| 90 |
+
elif "Full-time" in text:
|
| 91 |
+
job_type = text
|
| 92 |
+
elif "Mid-Senior level" in text:
|
| 93 |
+
position_level = text
|
| 94 |
+
else:
|
| 95 |
+
industry = text
|
| 96 |
+
|
| 97 |
+
# Extract company size and industry
|
| 98 |
+
company_info = additional_info.find_element(By.XPATH, ".//span")
|
| 99 |
+
company_info_text = company_info.text.strip()
|
| 100 |
+
if "employees" in company_info_text:
|
| 101 |
+
company_size = company_info_text.split(" 路 ")[0]
|
| 102 |
+
industry = company_info_text.split(" 路 ")[1]
|
| 103 |
+
else:
|
| 104 |
+
industry = company_info_text
|
| 105 |
+
|
| 106 |
+
# Extract skills
|
| 107 |
+
skills_button = additional_info.find_element(By.CLASS_NAME, "job-details-jobs-unified-top-card__job-insight-text-button")
|
| 108 |
+
skills_link = skills_button.find_element(By.TAG_NAME, "a")
|
| 109 |
+
skills = skills_link.text.split(": ")[1]
|
| 110 |
+
|
| 111 |
+
except NoSuchElementException:
|
| 112 |
+
pass
|
| 113 |
+
|
| 114 |
+
return company_size, position_level, salary, job_type, industry, skills
|
| 115 |
+
|
| 116 |
+
def get_position_data(self, job):
|
| 117 |
+
"""Gets the position data for a posting."""
|
| 118 |
+
job_info = job.text.split('\n')
|
| 119 |
+
if len(job_info) < 3:
|
| 120 |
+
logging.warning("Incomplete job information, skipping...")
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
position, company, *details = job_info
|
| 124 |
+
location = details[0] if details else None
|
| 125 |
+
description = self.get_job_description(job)
|
| 126 |
+
|
| 127 |
+
return [position, company, location, description]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def extract_additional_details(self, job):
|
| 131 |
+
"""Extracts additional details like company size, position level, salary, and job type if available."""
|
| 132 |
+
company_size = None
|
| 133 |
+
position_level = None
|
| 134 |
+
salary = None
|
| 135 |
+
job_type = None
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
additional_info = job.find_element(By.CLASS_NAME, "job-card-search__company-size").text
|
| 139 |
+
if "employees" in additional_info:
|
| 140 |
+
company_size = additional_info.strip()
|
| 141 |
+
except NoSuchElementException:
|
| 142 |
+
pass
|
| 143 |
+
|
| 144 |
+
try:
|
| 145 |
+
position_level = job.find_element(By.CLASS_NAME, "job-card-search__badge").text
|
| 146 |
+
except NoSuchElementException:
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
salary = job.find_element(By.CLASS_NAME, "job-card-search__salary").text
|
| 151 |
+
except NoSuchElementException:
|
| 152 |
+
pass
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
job_type = job.find_element(By.CLASS_NAME, "job-card-search__job-type").text
|
| 156 |
+
except NoSuchElementException:
|
| 157 |
+
pass
|
| 158 |
+
|
| 159 |
+
return company_size, position_level, salary, job_type
|
| 160 |
+
|
| 161 |
+
def get_job_description(self, job):
|
| 162 |
+
"""Gets the job description."""
|
| 163 |
+
self.scroll_to(job)
|
| 164 |
+
try:
|
| 165 |
+
description_element = self.driver.find_element(By.CLASS_NAME, "jobs-description")
|
| 166 |
+
description = description_element.text
|
| 167 |
+
except NoSuchElementException:
|
| 168 |
+
description = None
|
| 169 |
+
return description
|
| 170 |
+
|
| 171 |
+
def get_application_link(self, job):
|
| 172 |
+
"""Gets the job application link."""
|
| 173 |
+
try:
|
| 174 |
+
application_link_element = job.find_element(By.CLASS_NAME, "job-card-search__apply-button-container").find_element(By.TAG_NAME, "a")
|
| 175 |
+
application_link = application_link_element.get_attribute("href")
|
| 176 |
+
except NoSuchElementException:
|
| 177 |
+
application_link = None
|
| 178 |
+
return application_link
|
| 179 |
+
|
| 180 |
+
def run(self, email, password, keywords, location, date_posted):
|
| 181 |
+
if os.path.exists("data/cookies.txt"):
|
| 182 |
+
self.driver.get("https://www.linkedin.com/")
|
| 183 |
+
self.load_cookie("data/cookies.txt")
|
| 184 |
+
self.driver.get("https://www.linkedin.com/")
|
| 185 |
+
else:
|
| 186 |
+
self.login(email=email, password=password)
|
| 187 |
+
self.save_cookie("data/cookies.txt")
|
| 188 |
+
|
| 189 |
+
logging.info("Begin LinkedIn keyword search")
|
| 190 |
+
self.search_linkedin(keywords, location, date_posted)
|
| 191 |
+
self.wait()
|
| 192 |
+
|
| 193 |
+
csv_file_path = os.path.join("data", "data.csv")
|
| 194 |
+
with open(csv_file_path, "w", newline="", encoding="utf-8") as csvfile:
|
| 195 |
+
writer = csv.writer(csvfile)
|
| 196 |
+
writer.writerow(["Position", "Company", "Location", "Description"])
|
| 197 |
+
|
| 198 |
+
page = 1
|
| 199 |
+
while True:
|
| 200 |
+
jobs = self.driver.find_elements(By.CLASS_NAME, "occludable-update")
|
| 201 |
+
for job in jobs:
|
| 202 |
+
job_data = self.get_position_data(job)
|
| 203 |
+
if job_data:
|
| 204 |
+
position, company, location, description = job_data
|
| 205 |
+
writer.writerow([position, company, location, description])
|
| 206 |
+
|
| 207 |
+
next_button_xpath = f"//button[@aria-label='Page {page + 1}']"
|
| 208 |
+
next_button = self.driver.find_elements(By.XPATH, next_button_xpath)
|
| 209 |
+
if next_button:
|
| 210 |
+
next_button[0].click()
|
| 211 |
+
self.wait()
|
| 212 |
+
page += 1
|
| 213 |
+
else:
|
| 214 |
+
break
|
| 215 |
+
|
| 216 |
+
logging.info("Done scraping.")
|
| 217 |
+
logging.info("Closing session.")
|
| 218 |
+
self.close_session()
|
| 219 |
+
|
| 220 |
+
def close_session(self):
|
| 221 |
+
"""Close the actual session"""
|
| 222 |
+
logging.info("Closing session")
|
| 223 |
+
self.driver.close()
|
| 224 |
+
|
| 225 |
+
# Function to extract keywords from text
|
| 226 |
+
def extract_keywords(text):
|
| 227 |
+
# Tokenize the text
|
| 228 |
+
tokens = word_tokenize(text.lower())
|
| 229 |
+
# Remove stopwords and punctuation
|
| 230 |
+
stopwords_list = set(stopwords.words("english"))
|
| 231 |
+
tokens = [token for token in tokens if token not in stopwords_list and token not in string.punctuation]
|
| 232 |
+
return tokens
|
| 233 |
+
|
| 234 |
+
# Function to process uploaded resume
|
| 235 |
+
def process_resume(uploaded_file):
|
| 236 |
+
docx = Document(uploaded_file.name)
|
| 237 |
+
resume_text = ""
|
| 238 |
+
for paragraph in docx.paragraphs:
|
| 239 |
+
resume_text += paragraph.text + "\n"
|
| 240 |
+
return resume_text
|
| 241 |
+
|
| 242 |
+
def keyword_similarity_check(resume_text, df, keywords):
|
| 243 |
+
vectorizer = TfidfVectorizer()
|
| 244 |
+
job_descriptions = df["Description"].fillna("")
|
| 245 |
+
tfidf_matrix = vectorizer.fit_transform(job_descriptions)
|
| 246 |
+
|
| 247 |
+
# Extract keywords from the resume and job descriptions
|
| 248 |
+
resume_keywords = extract_keywords(resume_text)
|
| 249 |
+
job_description_keywords = [extract_keywords(desc) for desc in job_descriptions]
|
| 250 |
+
|
| 251 |
+
# Calculate the number of common keywords
|
| 252 |
+
common_keywords_count = sum(1 for keyword in resume_keywords if keyword in keywords)
|
| 253 |
+
job_common_keywords_counts = [sum(1 for keyword in job_keywords if keyword in keywords) for job_keywords in job_description_keywords]
|
| 254 |
+
|
| 255 |
+
# Calculate similarity scores based on the number of common keywords
|
| 256 |
+
similarity_scores = [count / len(keywords) * 100 for count in job_common_keywords_counts]
|
| 257 |
+
df["Similarity (%)"] = similarity_scores
|
| 258 |
+
df.to_csv("data/data.csv", index=False)
|
| 259 |
+
return df
|
| 260 |
+
|
| 261 |
+
def cosine_similarity_check(resume_text, df):
|
| 262 |
+
vectorizer = TfidfVectorizer()
|
| 263 |
+
job_descriptions = df["Description"].fillna("")
|
| 264 |
+
tfidf_matrix = vectorizer.fit_transform(job_descriptions)
|
| 265 |
+
resume_tfidf = vectorizer.transform([resume_text])
|
| 266 |
+
similarity_scores = cosine_similarity(resume_tfidf, tfidf_matrix)[0]
|
| 267 |
+
df["Similarity (%)"] = similarity_scores * 100
|
| 268 |
+
df.to_csv("data/data.csv", index=False)
|
| 269 |
+
return df
|
| 270 |
+
|
| 271 |
+
def main(email, password, keywords, location, date_posted, resume_file):
|
| 272 |
+
bot = LinkedInBot()
|
| 273 |
+
bot.run(email, password, keywords, location, date_posted)
|
| 274 |
+
|
| 275 |
+
df = pd.read_csv("data/data.csv")
|
| 276 |
+
|
| 277 |
+
if resume_file:
|
| 278 |
+
resume_text = process_resume(resume_file)
|
| 279 |
+
keywords = extract_keywords(resume_text)
|
| 280 |
+
df = keyword_similarity_check(resume_text, df, keywords)
|
| 281 |
+
df = cosine_similarity_check(resume_text, df)
|
| 282 |
+
|
| 283 |
+
return df
|
| 284 |
+
|
| 285 |
+
iface = gr.Interface(fn=main,
|
| 286 |
+
inputs=["text", "text", "text", "text", "text", "file"],
|
| 287 |
+
outputs="csv",
|
| 288 |
+
title="LinkedIn Job Analysis",
|
| 289 |
+
description="Enter your LinkedIn credentials and search criteria to scrape job postings. Upload a resume to check for job similarity.")
|
| 290 |
+
iface.launch()
|