Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Scikit learn example https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from sklearn.cluster import OPTICS, cluster_optics_dbscan
|
| 6 |
+
import matplotlib.gridspec as gridspec
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
plt.switch_backend("agg")
|
| 11 |
+
|
| 12 |
+
# Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
|
| 13 |
+
theme = gr.themes.Monochrome(
|
| 14 |
+
primary_hue="indigo",
|
| 15 |
+
secondary_hue="blue",
|
| 16 |
+
neutral_hue="slate",
|
| 17 |
+
radius_size=gr.themes.sizes.radius_sm,
|
| 18 |
+
font=[
|
| 19 |
+
gr.themes.GoogleFont("Open Sans"),
|
| 20 |
+
"ui-sans-serif",
|
| 21 |
+
"system-ui",
|
| 22 |
+
"sans-serif",
|
| 23 |
+
],
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def do_submit(n_points_per_cluster, min_samples, xi, min_cluster_size):
|
| 28 |
+
# # Generate sample data
|
| 29 |
+
np.random.seed(0)
|
| 30 |
+
n_points_per_cluster = int(n_points_per_cluster)
|
| 31 |
+
|
| 32 |
+
C1 = [-5, -2] + 0.8 * np.random.randn(n_points_per_cluster, 2)
|
| 33 |
+
C2 = [4, -1] + 0.1 * np.random.randn(n_points_per_cluster, 2)
|
| 34 |
+
C3 = [1, -2] + 0.2 * np.random.randn(n_points_per_cluster, 2)
|
| 35 |
+
C4 = [-2, 3] + 0.3 * np.random.randn(n_points_per_cluster, 2)
|
| 36 |
+
C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2)
|
| 37 |
+
C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster, 2)
|
| 38 |
+
X = np.vstack((C1, C2, C3, C4, C5, C6))
|
| 39 |
+
|
| 40 |
+
clust = OPTICS(
|
| 41 |
+
min_samples=int(min_samples),
|
| 42 |
+
xi=float(xi),
|
| 43 |
+
min_cluster_size=float(min_cluster_size),
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Run the fit
|
| 47 |
+
clust.fit(X)
|
| 48 |
+
|
| 49 |
+
labels_050 = cluster_optics_dbscan(
|
| 50 |
+
reachability=clust.reachability_,
|
| 51 |
+
core_distances=clust.core_distances_,
|
| 52 |
+
ordering=clust.ordering_,
|
| 53 |
+
eps=0.5,
|
| 54 |
+
)
|
| 55 |
+
labels_200 = cluster_optics_dbscan(
|
| 56 |
+
reachability=clust.reachability_,
|
| 57 |
+
core_distances=clust.core_distances_,
|
| 58 |
+
ordering=clust.ordering_,
|
| 59 |
+
eps=2,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
space = np.arange(len(X))
|
| 63 |
+
reachability = clust.reachability_[clust.ordering_]
|
| 64 |
+
labels = clust.labels_[clust.ordering_]
|
| 65 |
+
|
| 66 |
+
plt.figure(figsize=(10, 7))
|
| 67 |
+
G = gridspec.GridSpec(2, 3)
|
| 68 |
+
ax1 = plt.subplot(G[0, :])
|
| 69 |
+
ax2 = plt.subplot(G[1, 0])
|
| 70 |
+
ax3 = plt.subplot(G[1, 1])
|
| 71 |
+
ax4 = plt.subplot(G[1, 2])
|
| 72 |
+
|
| 73 |
+
# Reachability plot
|
| 74 |
+
colors = ["g.", "r.", "b.", "y.", "c."]
|
| 75 |
+
for klass, color in zip(range(0, 5), colors):
|
| 76 |
+
Xk = space[labels == klass]
|
| 77 |
+
Rk = reachability[labels == klass]
|
| 78 |
+
ax1.plot(Xk, Rk, color, alpha=0.3)
|
| 79 |
+
ax1.plot(space[labels == -1], reachability[labels == -1], "k.", alpha=0.3)
|
| 80 |
+
ax1.plot(space, np.full_like(space, 2.0, dtype=float), "k-", alpha=0.5)
|
| 81 |
+
ax1.plot(space, np.full_like(space, 0.5, dtype=float), "k-.", alpha=0.5)
|
| 82 |
+
ax1.set_ylabel("Reachability (epsilon distance)")
|
| 83 |
+
ax1.set_title("Reachability Plot")
|
| 84 |
+
|
| 85 |
+
# OPTICS
|
| 86 |
+
colors = ["g.", "r.", "b.", "y.", "c."]
|
| 87 |
+
for klass, color in zip(range(0, 5), colors):
|
| 88 |
+
Xk = X[clust.labels_ == klass]
|
| 89 |
+
ax2.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
| 90 |
+
ax2.plot(X[clust.labels_ == -1, 0], X[clust.labels_ == -1, 1], "k+", alpha=0.1)
|
| 91 |
+
ax2.set_title("Automatic Clustering\nOPTICS")
|
| 92 |
+
|
| 93 |
+
# DBSCAN at 0.5
|
| 94 |
+
colors = ["g.", "r.", "b.", "c."]
|
| 95 |
+
for klass, color in zip(range(0, 4), colors):
|
| 96 |
+
Xk = X[labels_050 == klass]
|
| 97 |
+
ax3.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
| 98 |
+
ax3.plot(X[labels_050 == -1, 0], X[labels_050 == -1, 1], "k+", alpha=0.1)
|
| 99 |
+
ax3.set_title("Clustering at 0.5 epsilon cut\nDBSCAN")
|
| 100 |
+
|
| 101 |
+
# DBSCAN at 2.
|
| 102 |
+
colors = ["g.", "m.", "y.", "c."]
|
| 103 |
+
for klass, color in zip(range(0, 4), colors):
|
| 104 |
+
Xk = X[labels_200 == klass]
|
| 105 |
+
ax4.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
| 106 |
+
ax4.plot(X[labels_200 == -1, 0], X[labels_200 == -1, 1], "k+", alpha=0.1)
|
| 107 |
+
ax4.set_title("Clustering at 2.0 epsilon cut\nDBSCAN")
|
| 108 |
+
|
| 109 |
+
plt.tight_layout()
|
| 110 |
+
|
| 111 |
+
return plt
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
title = "Demo of OPTICS clustering algorithm"
|
| 115 |
+
with gr.Blocks(title=title, theme=theme) as demo:
|
| 116 |
+
gr.Markdown(f"## {title}")
|
| 117 |
+
gr.Markdown(
|
| 118 |
+
"[Scikit-learn Example](https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html)"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
gr.Markdown(
|
| 122 |
+
"Finds core samples of high density and expands clusters from them. This example uses data that is \
|
| 123 |
+
generated so that the clusters have different densities. The [OPTICS](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS) is first used with its Xi cluster detection \
|
| 124 |
+
method, and then setting specific thresholds on the reachability, which corresponds to [DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN). We can see that \
|
| 125 |
+
the different clusters of OPTICS’s Xi method can be recovered with different choices of thresholds in DBSCAN."
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
n_points_per_cluster = gr.Slider(
|
| 129 |
+
minimum=200,
|
| 130 |
+
maximum=500,
|
| 131 |
+
label="Number of points per cluster",
|
| 132 |
+
step=50,
|
| 133 |
+
value=250,
|
| 134 |
+
)
|
| 135 |
+
min_samples = gr.Slider(
|
| 136 |
+
minimum=10,
|
| 137 |
+
maximum=100,
|
| 138 |
+
label="OPTICS - Minimum number of samples",
|
| 139 |
+
step=5,
|
| 140 |
+
value=50,
|
| 141 |
+
info="The number of samples in a neighborhood for a point to be considered as a core point.",
|
| 142 |
+
)
|
| 143 |
+
xi = gr.Slider(
|
| 144 |
+
minimum=0,
|
| 145 |
+
maximum=0.2,
|
| 146 |
+
label="OPTICS - Xi",
|
| 147 |
+
step=0.05,
|
| 148 |
+
value=0.05,
|
| 149 |
+
info="Determines the minimum steepness on the reachability plot that constitutes a cluster boundary. ",
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
min_cluster_size = gr.Slider(
|
| 153 |
+
minimum=0.01,
|
| 154 |
+
maximum=0.1,
|
| 155 |
+
label="OPTICS - Minimum cluster size",
|
| 156 |
+
step=0.01,
|
| 157 |
+
value=0.05,
|
| 158 |
+
info="Minimum number of samples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of samples (rounded to be at least 2).",
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
plt_out = gr.Plot()
|
| 162 |
+
|
| 163 |
+
sub_btn = gr.Button("Submit")
|
| 164 |
+
sub_btn.click(
|
| 165 |
+
fn=do_submit,
|
| 166 |
+
inputs=[n_points_per_cluster, min_samples, xi, min_cluster_size],
|
| 167 |
+
outputs=[plt_out],
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
if __name__ == "__main__":
|
| 172 |
+
demo.launch()
|
| 173 |
+
|