Spaces:
Sleeping
Sleeping
Improve app
Browse files- app.py +86 -31
- requirements.txt +3 -3
app.py
CHANGED
|
@@ -19,23 +19,54 @@ class Examples(gr.helpers.Examples):
|
|
| 19 |
self.cached_file = Path(self.cached_folder) / "log.csv"
|
| 20 |
self.create()
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
def process_image(
|
| 29 |
-
predictor,
|
| 30 |
path_input: str,
|
|
|
|
| 31 |
data_type: str = "object"
|
| 32 |
) -> tuple:
|
| 33 |
-
"""Process single image"""
|
| 34 |
if path_input is None:
|
| 35 |
raise gr.Error("Please upload an image or select one from the gallery.")
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
| 38 |
-
out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}
|
| 39 |
|
| 40 |
# Load and process image
|
| 41 |
input_image = Image.open(path_input)
|
|
@@ -45,16 +76,15 @@ def process_image(
|
|
| 45 |
yield [input_image, out_path]
|
| 46 |
|
| 47 |
def create_demo():
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
|
| 51 |
-
# Create processing
|
| 52 |
-
process_object = spaces.GPU(
|
| 53 |
|
| 54 |
# Define markdown content
|
| 55 |
HEADER_MD = """
|
| 56 |
# 🎪 StableNormal Turbo
|
| 57 |
-
|
| 58 |
<p align="center">
|
| 59 |
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 60 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
|
@@ -69,6 +99,8 @@ def create_demo():
|
|
| 69 |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
| 70 |
</a>
|
| 71 |
</p>
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
# Create interface
|
|
@@ -92,9 +124,19 @@ def create_demo():
|
|
| 92 |
with gr.Row():
|
| 93 |
with gr.Column():
|
| 94 |
object_input = gr.Image(label="Input Object Image", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
with gr.Row():
|
| 96 |
object_submit_btn = gr.Button("Compute Normal", variant="primary")
|
| 97 |
object_reset_btn = gr.Button("Reset")
|
|
|
|
| 98 |
with gr.Column():
|
| 99 |
object_output_slider = ImageSlider(
|
| 100 |
label="Normal outputs",
|
|
@@ -106,36 +148,49 @@ def create_demo():
|
|
| 106 |
position=0.25,
|
| 107 |
)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Event Handlers for Object Tab
|
| 124 |
object_submit_btn.click(
|
| 125 |
-
fn=lambda x,
|
| 126 |
-
inputs=object_input,
|
| 127 |
outputs=None,
|
| 128 |
queue=False,
|
| 129 |
).success(
|
| 130 |
fn=process_object,
|
| 131 |
-
inputs=object_input,
|
| 132 |
outputs=[object_output_slider],
|
| 133 |
)
|
| 134 |
|
| 135 |
object_reset_btn.click(
|
| 136 |
-
fn=lambda: (None,
|
| 137 |
inputs=[],
|
| 138 |
-
outputs=[object_input, object_output_slider],
|
| 139 |
queue=False,
|
| 140 |
)
|
| 141 |
|
|
|
|
| 19 |
self.cached_file = Path(self.cached_folder) / "log.csv"
|
| 20 |
self.create()
|
| 21 |
|
| 22 |
+
# Global variable to store loaded predictors
|
| 23 |
+
predictors = {}
|
| 24 |
+
|
| 25 |
+
# Available model versions
|
| 26 |
+
MODEL_VERSIONS = {
|
| 27 |
+
"v0.3": "yoso-normal-v0-3",
|
| 28 |
+
"v1.0": "yoso-normal-v1-0",
|
| 29 |
+
"v1.5": "yoso-normal-v1-5",
|
| 30 |
+
"v1.8.1": "yoso-normal-v1-8-1"
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
def load_predictor(version: str = "v1.8.1"):
|
| 34 |
+
"""Load model predictor using torch.hub with specified version"""
|
| 35 |
+
if version not in predictors:
|
| 36 |
+
yoso_version = MODEL_VERSIONS[version]
|
| 37 |
+
print(f"Loading StableNormal with {yoso_version}...")
|
| 38 |
+
predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal_turbo",
|
| 39 |
+
trust_repo=True, yoso_version=yoso_version)
|
| 40 |
+
predictors[version] = predictor
|
| 41 |
+
print(f"Successfully loaded {version}")
|
| 42 |
+
return predictors[version]
|
| 43 |
+
|
| 44 |
+
def precache_all_predictors():
|
| 45 |
+
"""Precache all model predictors at startup"""
|
| 46 |
+
print("Precaching all StableNormal predictors...")
|
| 47 |
+
for version in MODEL_VERSIONS.keys():
|
| 48 |
+
print(f"Precaching {version}...")
|
| 49 |
+
try:
|
| 50 |
+
load_predictor(version)
|
| 51 |
+
print(f"✓ Successfully precached {version}")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"✗ Failed to precache {version}: {e}")
|
| 54 |
+
print("Finished precaching all predictors.")
|
| 55 |
|
| 56 |
def process_image(
|
|
|
|
| 57 |
path_input: str,
|
| 58 |
+
version: str = "v1.8.1",
|
| 59 |
data_type: str = "object"
|
| 60 |
) -> tuple:
|
| 61 |
+
"""Process single image with specified model version"""
|
| 62 |
if path_input is None:
|
| 63 |
raise gr.Error("Please upload an image or select one from the gallery.")
|
| 64 |
+
|
| 65 |
+
# Load the predictor for the specified version
|
| 66 |
+
predictor = load_predictor(version)
|
| 67 |
|
| 68 |
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
| 69 |
+
out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal_{version.replace('.', '_')}.png")
|
| 70 |
|
| 71 |
# Load and process image
|
| 72 |
input_image = Image.open(path_input)
|
|
|
|
| 76 |
yield [input_image, out_path]
|
| 77 |
|
| 78 |
def create_demo():
|
| 79 |
+
# Precache all predictors before creating the demo
|
| 80 |
+
precache_all_predictors()
|
| 81 |
|
| 82 |
+
# Create processing function
|
| 83 |
+
process_object = spaces.GPU(process_image)
|
| 84 |
|
| 85 |
# Define markdown content
|
| 86 |
HEADER_MD = """
|
| 87 |
# 🎪 StableNormal Turbo
|
|
|
|
| 88 |
<p align="center">
|
| 89 |
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 90 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
|
|
|
| 99 |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
| 100 |
</a>
|
| 101 |
</p>
|
| 102 |
+
|
| 103 |
+
Select between different YOSO Normal model versions. Each version may have different performance characteristics and quality trade-offs.
|
| 104 |
"""
|
| 105 |
|
| 106 |
# Create interface
|
|
|
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column():
|
| 126 |
object_input = gr.Image(label="Input Object Image", type="filepath")
|
| 127 |
+
|
| 128 |
+
# Model version selector
|
| 129 |
+
version_dropdown = gr.Dropdown(
|
| 130 |
+
choices=list(MODEL_VERSIONS.keys()),
|
| 131 |
+
value="v1.8.1",
|
| 132 |
+
label="Model Version",
|
| 133 |
+
info="Select YOSO Normal model version"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
with gr.Row():
|
| 137 |
object_submit_btn = gr.Button("Compute Normal", variant="primary")
|
| 138 |
object_reset_btn = gr.Button("Reset")
|
| 139 |
+
|
| 140 |
with gr.Column():
|
| 141 |
object_output_slider = ImageSlider(
|
| 142 |
label="Normal outputs",
|
|
|
|
| 148 |
position=0.25,
|
| 149 |
)
|
| 150 |
|
| 151 |
+
# Model version info
|
| 152 |
+
with gr.Row():
|
| 153 |
+
gr.Markdown("""
|
| 154 |
+
**Model Version Information:**
|
| 155 |
+
- **v0.3**: Camera Ready Version
|
| 156 |
+
- **v1.0**: Improve stability, but poor sharpness
|
| 157 |
+
- **v1.5**: Enhanced performance and accuracy
|
| 158 |
+
- **v1.8.1**: Latest version with best sharpness (default)
|
| 159 |
+
|
| 160 |
+
*All models are precached and ready for instant switching.*
|
| 161 |
+
""")
|
| 162 |
+
|
| 163 |
+
# Examples section
|
| 164 |
+
if os.path.exists(os.path.join("files", "object")):
|
| 165 |
+
Examples(
|
| 166 |
+
fn=lambda img, ver: process_object(img, ver),
|
| 167 |
+
examples=sorted([
|
| 168 |
+
[os.path.join("files", "object", name), "v1.8.1"]
|
| 169 |
+
for name in os.listdir(os.path.join("files", "object"))
|
| 170 |
+
]),
|
| 171 |
+
inputs=[object_input, version_dropdown],
|
| 172 |
+
outputs=[object_output_slider],
|
| 173 |
+
cache_examples=False,
|
| 174 |
+
directory_name="examples_object",
|
| 175 |
+
examples_per_page=50,
|
| 176 |
+
)
|
| 177 |
|
| 178 |
# Event Handlers for Object Tab
|
| 179 |
object_submit_btn.click(
|
| 180 |
+
fn=lambda x, v: None if x else gr.Error("Please upload an image"),
|
| 181 |
+
inputs=[object_input, version_dropdown],
|
| 182 |
outputs=None,
|
| 183 |
queue=False,
|
| 184 |
).success(
|
| 185 |
fn=process_object,
|
| 186 |
+
inputs=[object_input, version_dropdown],
|
| 187 |
outputs=[object_output_slider],
|
| 188 |
)
|
| 189 |
|
| 190 |
object_reset_btn.click(
|
| 191 |
+
fn=lambda: (None, "v1.8.1", None),
|
| 192 |
inputs=[],
|
| 193 |
+
outputs=[object_input, version_dropdown, object_output_slider],
|
| 194 |
queue=False,
|
| 195 |
)
|
| 196 |
|
requirements.txt
CHANGED
|
@@ -30,9 +30,9 @@ filelock==3.14.0
|
|
| 30 |
fonttools==4.53.0
|
| 31 |
frozenlist==1.4.1
|
| 32 |
fsspec==2024.3.1
|
| 33 |
-
gradio==4.
|
| 34 |
-
gradio_client
|
| 35 |
-
gradio_imageslider
|
| 36 |
h11==0.14.0
|
| 37 |
httpcore==1.0.5
|
| 38 |
httptools==0.6.1
|
|
|
|
| 30 |
fonttools==4.53.0
|
| 31 |
frozenlist==1.4.1
|
| 32 |
fsspec==2024.3.1
|
| 33 |
+
gradio==4.44.1
|
| 34 |
+
gradio_client
|
| 35 |
+
gradio_imageslider
|
| 36 |
h11==0.14.0
|
| 37 |
httpcore==1.0.5
|
| 38 |
httptools==0.6.1
|