Spaces:
Running
Running
File size: 10,226 Bytes
deaf2c5 15de73a deaf2c5 15de73a deaf2c5 15de73a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
---
title: BioGuideMCP
emoji: π
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.49.1
app_file: gradio_app.py
pinned: false
license: mit
short_description: 'An MCP allowing users to analyze congressional biographies. '
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# Congressional Bioguide MCP Server
A Model Context Protocol (MCP) server that provides access to Congressional member profiles with both structured SQL queries and semantic search capabilities.
## Deployment Options
### 1. Gradio MCP (Hugging Face Spaces)
Run this MCP as a Gradio app with web interface + MCP server:
```bash
python gradio_app.py
```
This will launch a web interface at `http://localhost:7860` with 9 tools exposed as both a web UI and MCP tools.
**Deploy to Hugging Face Spaces:**
1. Create a new Space on Hugging Face
2. Set SDK to `gradio` (version 5.49.1+)
3. Upload all files including `gradio_app.py`, `congress.db`, `congress_faiss.index`, and `congress_bio_ids.pkl`
4. The app will automatically launch with `mcp_server=True`
### 2. Traditional MCP Server
Use the original MCP server for integration with Claude Desktop or other MCP clients:
```bash
python server.py
```
Test the server backend with `npx @modelcontextprotocol/inspector python server.py` or integrate it into your Claude setup.
## Features
### Gradio MCP Tools (9 Tools)
The Gradio app (`gradio_app.py`) exposes these 9 MCP tools:
1. **search_by_name** - Search members by name (first/last name)
2. **search_by_party** - Find by political party affiliation
3. **search_by_state** - Search by state/region representation
4. **semantic_search_biography** - AI-powered natural language search of biographies
5. **get_member_profile** - Get complete profile by Bioguide ID
6. **count_members_by_party** - Count members grouped by party
7. **count_members_by_state** - Count members grouped by state
8. **execute_sql_query** - Execute custom SQL queries (read-only)
9. **get_database_schema** - View database structure
### Traditional MCP Server Tools (14 Tools)
The traditional server (`server.py`) provides all tools:
**Search Tools** (return concise results by default):
1. **search_by_name** - Search members by name (returns: name, dates, party, congress)
2. **search_by_party** - Find by political party affiliation
3. **search_by_state** - Search by state/region representation
4. **search_by_congress** - Get all members from specific Congress
5. **search_by_date_range** - Find members who served during specific dates
6. **semantic_search_biography** - Natural language AI search of biographies
7. **search_biography_regex** - Regex pattern search (keywords, phrases)
8. **search_by_relationship** - Find members with family relationships
**Aggregation & Analysis Tools** (efficient for large datasets):
9. **count_members** - Count members by party, state, position, congress, or year
10. **temporal_analysis** - Analyze trends over time (party shifts, demographics, etc.)
11. **count_by_biography_content** - Count members mentioning specific keywords (e.g., "Harvard", "lawyer")
**Profile & Query Tools**:
12. **get_member_profile** - Get complete profile by Bioguide ID
13. **execute_sql_query** - Execute custom SQL queries (read-only)
14. **get_database_schema** - View database structure
### Database Schema
- **members** - Core biographical data (13,047+ profiles)
- **job_positions** - Congressional positions and affiliations
- **images** - Profile images
- **relationships** - Family relationships between members
- **creative_works** - Publications by members
- **assets** - Additional media assets
## Requirements
- **Python 3.10+** including Python 3.14
- β
**Python 3.14 is now supported!** (with single-threaded mode for FAISS)
## Setup
### Quick Start
```bash
./setup.sh
```
This automated script will:
1. Create a Python virtual environment
2. Install all dependencies
3. Ingest all Congressional profiles into SQLite
4. Build the FAISS semantic search index
### Manual Setup
If you prefer manual setup:
#### 1. Install Dependencies
```bash
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
```
#### 2. Ingest Data
Run the ingestion script to create the SQLite database and FAISS index:
```bash
python3 ingest_data.py
```
This will:
- Create `congress.db` SQLite database (13,047+ members)
- Build `congress_faiss.index` for semantic search
- Generate `congress_bio_ids.pkl` for ID mapping
Expected output:
```
Starting Congressional Bioguide ingestion...
============================================================
β Database schema created
Ingesting 13047 profiles...
Processed 1000/13047 profiles...
...
β Ingested 13047 profiles into database
Building FAISS index for semantic search...
Encoding 13047 biographies...
Encoded 3200/13047 biographies...
...
β FAISS index created with 13047 vectors
Index dimension: 384
============================================================
β Ingestion complete!
```
**Note**: Ingestion takes approximately 5-10 minutes depending on your system.
#### 3. Test the System (Optional)
```bash
python3 test_queries.py
```
#### 4. Run the Server
```bash
python3 server.py
```
## Usage Examples
### Name Search
```json
{
"name": "search_by_name",
"arguments": {
"family_name": "Lincoln"
}
}
```
### Party Search
```json
{
"name": "search_by_party",
"arguments": {
"party": "Republican",
"congress_number": 117
}
}
```
### State Search
```json
{
"name": "search_by_state",
"arguments": {
"state_code": "CA",
"congress_number": 117
}
}
```
### Semantic Search
```json
{
"name": "semantic_search_biography",
"arguments": {
"query": "Civil War veterans who became lawyers",
"top_k": 5
}
}
```
### Regex Search - Find Keywords
```json
{
"name": "search_biography_regex",
"arguments": {
"pattern": "Harvard",
"limit": 5
}
}
```
### Regex Search - Filter by Party
```json
{
"name": "search_biography_regex",
"arguments": {
"pattern": "lawyer",
"filter_party": "Republican",
"limit": 10
}
}
```
### Regex Search - Filter by State and Congress
```json
{
"name": "search_biography_regex",
"arguments": {
"pattern": "served.*Confederate Army",
"filter_state": "VA",
"limit": 5
}
}
```
**Note**: Regex search returns concise results (name, dates, party, state) by default. Set `return_full_profile: true` to get biography text.
### Count Members by Party
```json
{
"name": "count_members",
"arguments": {
"group_by": "party"
}
}
```
### Count Republicans by State in 117th Congress
```json
{
"name": "count_members",
"arguments": {
"group_by": "state",
"filter_party": "Republican",
"filter_congress": 117
}
}
```
### Temporal Analysis - Party Changes Over Time
```json
{
"name": "temporal_analysis",
"arguments": {
"analysis_type": "party_over_time",
"time_unit": "congress",
"start_date": "1900-01-01",
"end_date": "2000-12-31"
}
}
```
### Demographics Analysis - Average Age by Congress
```json
{
"name": "temporal_analysis",
"arguments": {
"analysis_type": "demographics",
"time_unit": "congress"
}
}
```
### Count Members Who Attended Harvard
```json
{
"name": "count_by_biography_content",
"arguments": {
"keywords": ["Harvard"]
}
}
```
### Count Lawyers by Party
```json
{
"name": "count_by_biography_content",
"arguments": {
"keywords": ["lawyer", "attorney"],
"breakdown_by": "party"
}
}
```
### Count Members Who Were Both Lawyers AND Veterans
```json
{
"name": "count_by_biography_content",
"arguments": {
"keywords": ["lawyer", "military", "army"],
"match_all": false,
"breakdown_by": "state"
}
}
```
### SQL Query - Find Longest Serving Members
```json
{
"name": "execute_sql_query",
"arguments": {
"query": "SELECT family_name, given_name, COUNT(DISTINCT congress_number) as congresses FROM members m JOIN job_positions j ON m.bio_id = j.bio_id GROUP BY m.bio_id HAVING congresses > 5 ORDER BY congresses DESC LIMIT 10"
}
}
```
### Get Full Member Profile
```json
{
"name": "get_member_profile",
"arguments": {
"bio_id": "L000313"
}
}
```
### Search by Congress Number
```json
{
"name": "search_by_congress",
"arguments": {
"congress_number": 117,
"chamber": "Senator"
}
}
```
### Search by Date Range
```json
{
"name": "search_by_date_range",
"arguments": {
"start_date": "1861-03-04",
"end_date": "1865-03-04"
}
}
```
### Find Family Relationships
```json
{
"name": "search_by_relationship",
"arguments": {
"relationship_type": "father"
}
}
```
### Complex SQL - Party Transitions
```json
{
"name": "execute_sql_query",
"arguments": {
"query": "SELECT m.bio_id, m.family_name, m.given_name, GROUP_CONCAT(DISTINCT j.party) as parties FROM members m JOIN job_positions j ON m.bio_id = j.bio_id WHERE j.party IS NOT NULL GROUP BY m.bio_id HAVING COUNT(DISTINCT j.party) > 1 LIMIT 20"
}
}
```
## Data Source
Data comes from the US Congressional Bioguide, containing biographical information for all members of Congress throughout history.
## Technical Details
- **Database**: SQLite for structured queries
- **Semantic Search**: FAISS with sentence-transformers (all-MiniLM-L6-v2)
- **Embedding Dimension**: 384
- **Index Type**: Flat IP (Inner Product) with L2 normalization for cosine similarity
## MCP Configuration
Add to your MCP settings file (usually `~/.config/claude/claude_desktop_config.json` on macOS/Linux or `%APPDATA%\Claude\claude_desktop_config.json` on Windows):
```json
{
"mcpServers": {
"congressional-bioguide": {
"command": "/Users/electron/workspace/Nanocentury AI/NIO/BioGuideMCP/venv/bin/python",
"args": [
"/Users/electron/workspace/Nanocentury AI/NIO/BioGuideMCP/server.py"
],
"cwd": "/Users/electron/workspace/Nanocentury AI/NIO/BioGuideMCP"
}
}
}
```
**Note**: This uses the virtual environment's Python which has all the required dependencies installed.
## License
Data is public domain from the US Congressional Bioguide.
|