File size: 4,169 Bytes
15de73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
"""

Test the embeddings data to check for issues before FAISS operations.

"""

import sys
import os
import sqlite3
import numpy as np

print("=" * 60)
print("EMBEDDINGS DATA VALIDATION TEST")
print("=" * 60)
print(f"Python version: {sys.version}")
print()

# Load model
print("Loading sentence transformer...")
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
print("βœ“ Model loaded\n")

# Load ALL biographies
print("Loading ALL biographies from database...")
conn = sqlite3.connect("congress.db")
cursor = conn.cursor()
cursor.execute("""

    SELECT bio_id, profile_text

    FROM members

    WHERE profile_text IS NOT NULL AND profile_text != ''

""")
rows = cursor.fetchall()
conn.close()

bio_ids = [r[0] for r in rows]
texts = [r[1] for r in rows]
print(f"βœ“ Loaded {len(texts)} biographies\n")

# Encode ALL
print("Encoding all biographies...")
print("(This will take a few minutes...)")
embeddings = []
batch_size = 32

for i in range(0, len(texts), batch_size):
    batch = texts[i:i + batch_size]
    batch_embeddings = model.encode(
        batch,
        show_progress_bar=False,
        convert_to_numpy=True,
        normalize_embeddings=False,
        device='cpu'
    )
    embeddings.extend(batch_embeddings)

    if (i // batch_size + 1) % 100 == 0:
        print(f"  Encoded {i + len(batch)}/{len(texts)}...")

embeddings = np.array(embeddings, dtype=np.float32)
print(f"βœ“ Encoded all, shape: {embeddings.shape}\n")

# Validate embeddings
print("Validating embeddings data...")
print(f"  Shape: {embeddings.shape}")
print(f"  Dtype: {embeddings.dtype}")
print(f"  Min value: {np.min(embeddings)}")
print(f"  Max value: {np.max(embeddings)}")
print(f"  Mean: {np.mean(embeddings)}")
print(f"  Has NaN: {np.any(np.isnan(embeddings))}")
print(f"  Has Inf: {np.any(np.isinf(embeddings))}")
print(f"  Is C-contiguous: {embeddings.flags['C_CONTIGUOUS']}")
print(f"  Memory usage: {embeddings.nbytes / (1024**2):.2f} MB")

if np.any(np.isnan(embeddings)):
    print("\n❌ ERROR: Embeddings contain NaN values!")
    sys.exit(1)

if np.any(np.isinf(embeddings)):
    print("\n❌ ERROR: Embeddings contain Inf values!")
    sys.exit(1)

print("\nβœ“ Embeddings data looks good")

# Now test FAISS operations one by one
print("\n" + "=" * 60)
print("Testing FAISS operations...")
print("=" * 60)

import faiss

dimension = embeddings.shape[1]
print(f"\n1. Creating IndexFlatIP with dimension {dimension}...")
try:
    index = faiss.IndexFlatIP(dimension)
    print("   βœ“ Index created")
except Exception as e:
    print(f"   ❌ FAILED at index creation: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

print(f"\n2. Normalizing {len(embeddings)} embeddings...")
try:
    # Make a copy to preserve original
    embeddings_norm = embeddings.copy()
    print(f"   Before normalize - sample norm: {np.linalg.norm(embeddings_norm[0]):.4f}")

    faiss.normalize_L2(embeddings_norm)

    print(f"   After normalize - sample norm: {np.linalg.norm(embeddings_norm[0]):.4f}")
    print(f"   βœ“ Normalized")
except Exception as e:
    print(f"   ❌ FAILED at normalize: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

print(f"\n3. Adding {len(embeddings_norm)} vectors to index...")
try:
    index.add(embeddings_norm)
    print(f"   βœ“ Added {index.ntotal} vectors")
except Exception as e:
    print(f"   ❌ FAILED at add: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

print(f"\n4. Writing index to disk...")
try:
    faiss.write_index(index, "test_full.faiss")
    print(f"   βœ“ Index written")
except Exception as e:
    print(f"   ❌ FAILED at write: {e}")
    import traceback
    traceback.print_exc()
    sys.exit(1)

print("\n" + "=" * 60)
print("βœ… SUCCESS! Full pipeline works!")
print("=" * 60)
print(f"\nProcessed {len(embeddings)} embeddings successfully")
print("The index has been created: test_full.faiss")