============================================================ BUILDING FAISS INDEX FOR CONGRESSIONAL BIOGUIDE ============================================================ 1. Loading sentence transformer model... ✓ Model loaded in 2.021s 2. Loading biographies from database... ✓ Loaded 13,047 biographies in 0.211s 3. Preparing data for encoding... ✓ Prepared 13,047 texts ✓ Time: 0.000s 4. Generating embeddings... (This may take several minutes...) Encoded 3,200/13,047 (48 texts/sec, ~207s remaining) Encoded 6,400/13,047 (47 texts/sec, ~141s remaining) Encoded 9,600/13,047 (47 texts/sec, ~74s remaining) Encoded 12,800/13,047 (46 texts/sec, ~5s remaining) ✓ Generated 13,047 embeddings in 280.6s ✓ Shape: (13047, 384) 5. Building FAISS index... Dimension: 384 ✓ Index built in 0.009s ✓ Total vectors in index: 13,047 6. Saving FAISS index to disk... ✓ Index saved to: /Users/electron/workspace/Nanocentury AI/NIO/BioGuideMCP/congress_faiss.index ✓ Time: 0.004s 7. Saving bio ID mapping... ✓ Mapping saved to: /Users/electron/workspace/Nanocentury AI/NIO/BioGuideMCP/congress_bio_ids.pkl ✓ Time: 0.001s ============================================================ FAISS INDEX BUILD COMPLETE ============================================================ Total biographies indexed: 13,047 Index file size: 19.11 MB Mapping file size: 0.12 MB Total size: 19.24 MB The MCP server will now load this index on startup for semantic search. You can now use the 'semantic_search_biography' tool!