File size: 11,023 Bytes
91f974c
 
 
 
 
3e7266f
b924bc1
0a1d4cf
 
 
 
3e7266f
 
 
91f974c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1d4cf
3e7266f
 
 
 
0a1d4cf
 
3e7266f
0a1d4cf
 
 
 
 
91f974c
 
 
 
 
 
 
 
 
0a1d4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91f974c
 
 
 
 
 
 
 
 
 
 
0a1d4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b924bc1
 
 
 
 
 
 
 
 
 
0a1d4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5e33d3
0a1d4cf
 
b5e33d3
0a1d4cf
 
 
 
 
 
 
 
 
 
 
b5e33d3
91f974c
 
 
 
 
 
6de22e1
 
 
 
 
 
 
 
 
 
91f974c
 
 
0a1d4cf
 
 
 
 
 
 
 
 
 
 
 
91f974c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import logging
import sys
from dotenv import load_dotenv
from .config import DATASET_CONFIGS, load_prompt_template
from openai import OpenAI
from openai.types.chat import ChatCompletionMessageParam
import json

# Load environment variables
load_dotenv()

# Lazy imports to avoid blocking startup
# from .pipeline import RAGPipeline  # Will import when needed
# import umap  # Will import when needed for visualization
# import plotly.express as px  # Will import when needed for visualization
# import plotly.graph_objects as go  # Will import when needed for visualization
# from plotly.subplots import make_subplots  # Will import when needed for visualization
# import numpy as np  # Will import when needed for visualization
# from sklearn.preprocessing import normalize  # Will import when needed for visualization
# import pandas as pd  # Will import when needed for visualization

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

app = FastAPI(title="RAG Pipeline API", description="Multi-dataset RAG API", version="1.0.0")

# Initialize OpenRouter client
openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
if not openrouter_api_key:
    raise ValueError("OPENROUTER_API_KEY environment variable is not set")

openrouter_client = OpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=openrouter_api_key
)

# Model configuration
MODEL_NAME = "z-ai/glm-4.5-air:free"

# Initialize pipelines for all datasets
pipelines = {}
google_api_key = os.getenv("GOOGLE_API_KEY")

logger.info(f"Starting RAG Pipeline API")
logger.info(f"Port from env: {os.getenv('PORT', 'Not set - will use 8000')}")
logger.info(f"Google API Key present: {'Yes' if google_api_key else 'No'}")
logger.info(f"Available datasets: {list(DATASET_CONFIGS.keys())}")

# Define tools for the GLM model
def rag_qa(question: str, dataset: str = "developer-portfolio") -> str:
    """
    Get answers from the RAG pipeline for specific questions about the dataset.
    
    Args:
        question: The question to answer using the RAG pipeline
        dataset: The dataset to search in (default: developer-portfolio)
    
    Returns:
        Answer from the RAG pipeline
    """
    try:
        # Check if pipelines are loaded
        if not pipelines:
            return "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment."
        
        # Select the appropriate pipeline based on dataset
        if dataset not in pipelines:
            return f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}"
        
        selected_pipeline = pipelines[dataset]
        answer = selected_pipeline.answer_question(question)
        return answer
    except Exception as e:
        return f"Error accessing RAG pipeline: {str(e)}"

# Tool definitions for GLM
TOOLS = [
    {
        "type": "function",
        "function": {
            "name": "rag_qa",
            "description": "Get answers from the RAG pipeline for specific questions about datasets",
            "parameters": {
                "type": "object",
                "properties": {
                    "question": {
                        "type": "string",
                        "description": "The question to answer using the RAG pipeline"
                    },
                    "dataset": {
                        "type": "string",
                        "description": "The dataset to search in (default: developer-portfolio)",
                        "default": "developer-portfolio"
                    }
                },
                "required": ["question"]
            }
        }
    }
]

# Don't load datasets during startup - do it asynchronously after server starts
logger.info("RAG Pipeline API is ready to serve requests - datasets will load in background")

# Visualization function disabled to speed up startup
# def create_3d_visualization(pipeline):
#     ... (commented out for faster startup)

class Question(BaseModel):
    text: str
    dataset: str = "developer-portfolio"  # Default dataset

class ChatMessage(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    messages: list[ChatMessage]
    dataset: str = "developer-portfolio"  # Default dataset

@app.post("/chat")
async def chat_with_ai(request: ChatRequest):
    """
    Chat with the AI assistant. The AI will use the RAG pipeline when needed to answer questions about the datasets.
    """
    try:
        # Convert messages to OpenAI format with proper typing
        messages: list[ChatCompletionMessageParam] = [
            {"role": msg.role, "content": msg.content}  # type: ignore
            for msg in request.messages
        ]
        
        # Add system message to guide the AI
        if request.dataset == "developer-portfolio":
            system_message: ChatCompletionMessageParam = {
                "role": "system",
                "content": load_prompt_template("system-instruction.txt")
            }
        else:
            system_message: ChatCompletionMessageParam = {
                "role": "system",
                "content": load_prompt_template("generic-system-instruction.txt")
            }
        messages.insert(0, system_message)
        
        # Make the API call with tools
        response = openrouter_client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            tools=TOOLS,  # type: ignore
            tool_choice="auto"
        )
        
        message = response.choices[0].message
        finish_reason = response.choices[0].finish_reason
        
        # Handle tool calls
        if finish_reason == "tool_calls" and hasattr(message, 'tool_calls') and message.tool_calls:
            tool_results = []
            
            # Execute tool calls
            for tool_call in message.tool_calls:
                if tool_call.function.name == "rag_qa":
                    # Parse arguments
                    args = json.loads(tool_call.function.arguments)
                    question = args.get("question")
                    dataset = args.get("dataset", request.dataset)
                    
                    # Call the rag_qa function
                    result = rag_qa(question, dataset)
                    tool_results.append({
                        "tool_call_id": tool_call.id,
                        "result": result
                    })
            
            # Add tool results to conversation and get final response
            assistant_message: ChatCompletionMessageParam = {
                "role": "assistant",
                "content": message.content or "",
                "tool_calls": [
                    {
                        "id": tc.id,
                        "type": tc.type,
                        "function": {
                            "name": tc.function.name,
                            "arguments": tc.function.arguments
                        }
                    }
                    for tc in message.tool_calls
                ]
            }
            messages.append(assistant_message)
            
            for tool_result in tool_results:
                tool_message: ChatCompletionMessageParam = {
                    "role": "tool",
                    "tool_call_id": tool_result["tool_call_id"],
                    "content": tool_result["result"]
                }
                messages.append(tool_message)
            
            # Get final response
            final_response = openrouter_client.chat.completions.create(
                model=MODEL_NAME,
                messages=messages
            )
            
            return {
                "response": final_response.choices[0].message.content,
                "tool_calls": [
                    {
                        "name": tc.function.name,
                        "arguments": tc.function.arguments
                    }
                    for tc in message.tool_calls
                ]
            }
        else:
            # Direct response without tool calls
            return {
                "response": message.content,
                "tool_calls": None
            }
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# /answer endpoint removed - use /chat for all interactions

@app.get("/datasets")
async def list_datasets():
    """List all available datasets"""
    return {"datasets": list(pipelines.keys())}

@app.get("/questions")
async def list_questions(dataset: str = "developer-portfolio"):
    """List all questions for a given dataset"""
    if dataset not in pipelines:
        raise HTTPException(status_code=400, detail=f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}")
    
    selected_pipeline = pipelines[dataset]
    questions = [doc.meta['question'] for doc in selected_pipeline.documents if 'question' in doc.meta]
    return {"dataset": dataset, "questions": questions}

async def load_datasets_background():
    """Load datasets in background after server starts"""
    global pipelines
    # Import RAGPipeline only when needed
    from .pipeline import RAGPipeline
    # Only load developer-portfolio to save memory
    dataset_name = "developer-portfolio"
    try:
        logger.info(f"Loading dataset: {dataset_name}")
        pipeline = RAGPipeline.from_preset(preset_name=dataset_name)
        pipelines[dataset_name] = pipeline
        logger.info(f"Successfully loaded {dataset_name}")
    except Exception as e:
        logger.error(f"Failed to load {dataset_name}: {e}")
    logger.info(f"Background loading complete - {len(pipelines)} datasets loaded")

@app.on_event("startup")
async def startup_event():
    logger.info("FastAPI application startup complete")
    logger.info(f"Server should be running on port: {os.getenv('PORT', '8000')}")
    
    # Start loading datasets in background (non-blocking)
    import asyncio
    asyncio.create_task(load_datasets_background())

@app.on_event("shutdown")
async def shutdown_event():
    logger.info("FastAPI application shutting down")

@app.get("/")
async def root():
    """Root endpoint"""
    return {"status": "ok", "message": "RAG Pipeline API", "version": "1.0.0", "datasets": list(pipelines.keys())}

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    logger.info("Health check called")
    loading_status = "complete" if "developer-portfolio" in pipelines else "loading"
    return {
        "status": "healthy", 
        "datasets_loaded": len(pipelines), 
        "total_datasets": 1,  # Only loading developer-portfolio
        "loading_status": loading_status,
        "port": os.getenv('PORT', '8000')
    }