File size: 11,023 Bytes
91f974c 3e7266f b924bc1 0a1d4cf 3e7266f 91f974c 0a1d4cf 3e7266f 0a1d4cf 3e7266f 0a1d4cf 91f974c 0a1d4cf 91f974c 0a1d4cf b924bc1 0a1d4cf b5e33d3 0a1d4cf b5e33d3 0a1d4cf b5e33d3 91f974c 6de22e1 91f974c 0a1d4cf 91f974c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import os
import logging
import sys
from dotenv import load_dotenv
from .config import DATASET_CONFIGS, load_prompt_template
from openai import OpenAI
from openai.types.chat import ChatCompletionMessageParam
import json
# Load environment variables
load_dotenv()
# Lazy imports to avoid blocking startup
# from .pipeline import RAGPipeline # Will import when needed
# import umap # Will import when needed for visualization
# import plotly.express as px # Will import when needed for visualization
# import plotly.graph_objects as go # Will import when needed for visualization
# from plotly.subplots import make_subplots # Will import when needed for visualization
# import numpy as np # Will import when needed for visualization
# from sklearn.preprocessing import normalize # Will import when needed for visualization
# import pandas as pd # Will import when needed for visualization
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
app = FastAPI(title="RAG Pipeline API", description="Multi-dataset RAG API", version="1.0.0")
# Initialize OpenRouter client
openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
if not openrouter_api_key:
raise ValueError("OPENROUTER_API_KEY environment variable is not set")
openrouter_client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=openrouter_api_key
)
# Model configuration
MODEL_NAME = "z-ai/glm-4.5-air:free"
# Initialize pipelines for all datasets
pipelines = {}
google_api_key = os.getenv("GOOGLE_API_KEY")
logger.info(f"Starting RAG Pipeline API")
logger.info(f"Port from env: {os.getenv('PORT', 'Not set - will use 8000')}")
logger.info(f"Google API Key present: {'Yes' if google_api_key else 'No'}")
logger.info(f"Available datasets: {list(DATASET_CONFIGS.keys())}")
# Define tools for the GLM model
def rag_qa(question: str, dataset: str = "developer-portfolio") -> str:
"""
Get answers from the RAG pipeline for specific questions about the dataset.
Args:
question: The question to answer using the RAG pipeline
dataset: The dataset to search in (default: developer-portfolio)
Returns:
Answer from the RAG pipeline
"""
try:
# Check if pipelines are loaded
if not pipelines:
return "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment."
# Select the appropriate pipeline based on dataset
if dataset not in pipelines:
return f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}"
selected_pipeline = pipelines[dataset]
answer = selected_pipeline.answer_question(question)
return answer
except Exception as e:
return f"Error accessing RAG pipeline: {str(e)}"
# Tool definitions for GLM
TOOLS = [
{
"type": "function",
"function": {
"name": "rag_qa",
"description": "Get answers from the RAG pipeline for specific questions about datasets",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to answer using the RAG pipeline"
},
"dataset": {
"type": "string",
"description": "The dataset to search in (default: developer-portfolio)",
"default": "developer-portfolio"
}
},
"required": ["question"]
}
}
}
]
# Don't load datasets during startup - do it asynchronously after server starts
logger.info("RAG Pipeline API is ready to serve requests - datasets will load in background")
# Visualization function disabled to speed up startup
# def create_3d_visualization(pipeline):
# ... (commented out for faster startup)
class Question(BaseModel):
text: str
dataset: str = "developer-portfolio" # Default dataset
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: list[ChatMessage]
dataset: str = "developer-portfolio" # Default dataset
@app.post("/chat")
async def chat_with_ai(request: ChatRequest):
"""
Chat with the AI assistant. The AI will use the RAG pipeline when needed to answer questions about the datasets.
"""
try:
# Convert messages to OpenAI format with proper typing
messages: list[ChatCompletionMessageParam] = [
{"role": msg.role, "content": msg.content} # type: ignore
for msg in request.messages
]
# Add system message to guide the AI
if request.dataset == "developer-portfolio":
system_message: ChatCompletionMessageParam = {
"role": "system",
"content": load_prompt_template("system-instruction.txt")
}
else:
system_message: ChatCompletionMessageParam = {
"role": "system",
"content": load_prompt_template("generic-system-instruction.txt")
}
messages.insert(0, system_message)
# Make the API call with tools
response = openrouter_client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
tools=TOOLS, # type: ignore
tool_choice="auto"
)
message = response.choices[0].message
finish_reason = response.choices[0].finish_reason
# Handle tool calls
if finish_reason == "tool_calls" and hasattr(message, 'tool_calls') and message.tool_calls:
tool_results = []
# Execute tool calls
for tool_call in message.tool_calls:
if tool_call.function.name == "rag_qa":
# Parse arguments
args = json.loads(tool_call.function.arguments)
question = args.get("question")
dataset = args.get("dataset", request.dataset)
# Call the rag_qa function
result = rag_qa(question, dataset)
tool_results.append({
"tool_call_id": tool_call.id,
"result": result
})
# Add tool results to conversation and get final response
assistant_message: ChatCompletionMessageParam = {
"role": "assistant",
"content": message.content or "",
"tool_calls": [
{
"id": tc.id,
"type": tc.type,
"function": {
"name": tc.function.name,
"arguments": tc.function.arguments
}
}
for tc in message.tool_calls
]
}
messages.append(assistant_message)
for tool_result in tool_results:
tool_message: ChatCompletionMessageParam = {
"role": "tool",
"tool_call_id": tool_result["tool_call_id"],
"content": tool_result["result"]
}
messages.append(tool_message)
# Get final response
final_response = openrouter_client.chat.completions.create(
model=MODEL_NAME,
messages=messages
)
return {
"response": final_response.choices[0].message.content,
"tool_calls": [
{
"name": tc.function.name,
"arguments": tc.function.arguments
}
for tc in message.tool_calls
]
}
else:
# Direct response without tool calls
return {
"response": message.content,
"tool_calls": None
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# /answer endpoint removed - use /chat for all interactions
@app.get("/datasets")
async def list_datasets():
"""List all available datasets"""
return {"datasets": list(pipelines.keys())}
@app.get("/questions")
async def list_questions(dataset: str = "developer-portfolio"):
"""List all questions for a given dataset"""
if dataset not in pipelines:
raise HTTPException(status_code=400, detail=f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}")
selected_pipeline = pipelines[dataset]
questions = [doc.meta['question'] for doc in selected_pipeline.documents if 'question' in doc.meta]
return {"dataset": dataset, "questions": questions}
async def load_datasets_background():
"""Load datasets in background after server starts"""
global pipelines
# Import RAGPipeline only when needed
from .pipeline import RAGPipeline
# Only load developer-portfolio to save memory
dataset_name = "developer-portfolio"
try:
logger.info(f"Loading dataset: {dataset_name}")
pipeline = RAGPipeline.from_preset(preset_name=dataset_name)
pipelines[dataset_name] = pipeline
logger.info(f"Successfully loaded {dataset_name}")
except Exception as e:
logger.error(f"Failed to load {dataset_name}: {e}")
logger.info(f"Background loading complete - {len(pipelines)} datasets loaded")
@app.on_event("startup")
async def startup_event():
logger.info("FastAPI application startup complete")
logger.info(f"Server should be running on port: {os.getenv('PORT', '8000')}")
# Start loading datasets in background (non-blocking)
import asyncio
asyncio.create_task(load_datasets_background())
@app.on_event("shutdown")
async def shutdown_event():
logger.info("FastAPI application shutting down")
@app.get("/")
async def root():
"""Root endpoint"""
return {"status": "ok", "message": "RAG Pipeline API", "version": "1.0.0", "datasets": list(pipelines.keys())}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
logger.info("Health check called")
loading_status = "complete" if "developer-portfolio" in pipelines else "loading"
return {
"status": "healthy",
"datasets_loaded": len(pipelines),
"total_datasets": 1, # Only loading developer-portfolio
"loading_status": loading_status,
"port": os.getenv('PORT', '8000')
}
|