Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig | |
| class LocalQwenModel: | |
| def __init__(self, model_path: str = "Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4"): | |
| self.model_path = model_path | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| model_path, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| torch_dtype="auto", | |
| # quantization_config=self.quantization_config, | |
| low_cpu_mem_usage=True, | |
| ) | |
| self.streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| def generate(self, prompt: str, max_new_tokens: int = 256) -> str: | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful novelist."}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| text = self.tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| inputs = self.tokenizer([text], return_tensors="pt").to(self.device) | |
| with torch.no_grad(): | |
| output = self.model.generate( | |
| **inputs, | |
| # streamer=self.streamer, | |
| max_new_tokens=max_new_tokens, | |
| # do_sample=True, | |
| temperature=0.8, | |
| top_p=0.9 | |
| ) | |
| return self.tokenizer.decode(output[0], skip_special_tokens=True) | |