AI_Novelist_RAG / app /models /tinyllama.py
nanfangwuyu21's picture
Change local model tiny llama to use OpenAI api with 4o-mini, change summary model to faster local model. (OpenAI api is an option as well)
8e52cca
import torch
from transformers import pipeline
import os
class TinyLlamaModel:
def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
self.pipe = pipeline(
"text-generation",
model=model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
def generate(self, prompt: str, role: str = None, max_new_tokens: int = 256, temperature=0.7, top_k=50, top_p=0.95):
role = role if role else "You are a friendly chatbot who always responds in the style of a novelist"
messages = [
{"role": "system", "content": role},
{"role": "user", "content": prompt}
]
prompt = self.pipe.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False
)
outputs = self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p)
return outputs[0]["generated_text"].split("<|assistant|>")[-1].strip()
def summarize(self, text: str, prompt: str = None, role: str = None, filename: str = '', max_new_tokens=200) -> str:
prompt = prompt if prompt else f"Write a SHORT summary recording the main plot and setting for the following content WITHIN 100 words:\n\n{text}\n\nSummary:"
role = role if role else "You are a friendly chatbot who are a novelist and summarize the text in a concise manner"
messages = [
{"role": "system", "content": role},
{"role": "user", "content": prompt}
]
prompt = self.pipe.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False
)
summary = self.pipe(prompt, max_new_tokens=200, do_sample=False)[0]['generated_text'].split("<|assistant|>")[-1].strip()
save_dir = "data/samples/summarized"
filepath = os.path.join(save_dir, filename) + "_summary.txt"
with open(filepath, "w", encoding="utf-8") as f:
f.write(summary)
return summary