Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
-
# app.py — MCP
|
| 2 |
-
#
|
| 3 |
-
# - Gradio ChatInterface for UI
|
| 4 |
-
# - process_document accepts local path and transforms it to a file:// URL in the tool call
|
| 5 |
|
| 6 |
from mcp.server.fastmcp import FastMCP
|
| 7 |
from typing import Optional, List, Tuple, Any, Dict
|
|
@@ -14,21 +12,14 @@ import traceback
|
|
| 14 |
import inspect
|
| 15 |
import re
|
| 16 |
|
| 17 |
-
# Optional imports
|
|
|
|
| 18 |
try:
|
| 19 |
-
from transformers import pipeline,
|
| 20 |
TRANSFORMERS_AVAILABLE = True
|
| 21 |
except Exception:
|
| 22 |
TRANSFORMERS_AVAILABLE = False
|
| 23 |
|
| 24 |
-
# Optional embeddings for light retrieval if desired
|
| 25 |
-
try:
|
| 26 |
-
from sentence_transformers import SentenceTransformer
|
| 27 |
-
import numpy as np
|
| 28 |
-
SENTEVAL_AVAILABLE = True
|
| 29 |
-
except Exception:
|
| 30 |
-
SENTEVAL_AVAILABLE = False
|
| 31 |
-
|
| 32 |
# ----------------------------
|
| 33 |
# Load config
|
| 34 |
# ----------------------------
|
|
@@ -38,8 +29,8 @@ try:
|
|
| 38 |
CLIENT_SECRET,
|
| 39 |
REFRESH_TOKEN,
|
| 40 |
API_BASE,
|
| 41 |
-
LOCAL_MODEL,
|
| 42 |
-
LOCAL_TOKENIZER
|
| 43 |
)
|
| 44 |
except Exception:
|
| 45 |
raise SystemExit(
|
|
@@ -52,17 +43,21 @@ except Exception:
|
|
| 52 |
mcp = FastMCP("ZohoCRMAgent")
|
| 53 |
|
| 54 |
# ----------------------------
|
| 55 |
-
# Analytics (simple)
|
| 56 |
# ----------------------------
|
| 57 |
ANALYTICS_PATH = "mcp_analytics.json"
|
| 58 |
|
| 59 |
def _init_analytics():
|
| 60 |
if not os.path.exists(ANALYTICS_PATH):
|
| 61 |
-
base = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
with open(ANALYTICS_PATH, "w") as f:
|
| 63 |
json.dump(base, f, indent=2)
|
| 64 |
|
| 65 |
-
|
| 66 |
def _log_tool_call(tool_name: str, success: bool = True):
|
| 67 |
try:
|
| 68 |
with open(ANALYTICS_PATH, "r") as f:
|
|
@@ -78,7 +73,6 @@ def _log_tool_call(tool_name: str, success: bool = True):
|
|
| 78 |
with open(ANALYTICS_PATH, "w") as f:
|
| 79 |
json.dump(data, f, indent=2)
|
| 80 |
|
| 81 |
-
|
| 82 |
def _log_llm_call(confidence: Optional[float] = None):
|
| 83 |
try:
|
| 84 |
with open(ANALYTICS_PATH, "r") as f:
|
|
@@ -94,45 +88,71 @@ def _log_llm_call(confidence: Optional[float] = None):
|
|
| 94 |
_init_analytics()
|
| 95 |
|
| 96 |
# ----------------------------
|
| 97 |
-
# Local LLM
|
| 98 |
# ----------------------------
|
| 99 |
LLM_PIPELINE = None
|
| 100 |
TOKENIZER = None
|
| 101 |
|
| 102 |
def init_local_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
global LLM_PIPELINE, TOKENIZER
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return
|
|
|
|
| 107 |
try:
|
| 108 |
-
# If a specific tokenizer name was provided use it, otherwise use model name
|
| 109 |
tokenizer_name = LOCAL_TOKENIZER or LOCAL_MODEL
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
except Exception as e:
|
| 115 |
print("Failed to load local model:", e)
|
|
|
|
| 116 |
LLM_PIPELINE = None
|
| 117 |
|
|
|
|
| 118 |
init_local_model()
|
| 119 |
|
| 120 |
# ----------------------------
|
| 121 |
-
#
|
| 122 |
# ----------------------------
|
| 123 |
def rule_based_response(message: str) -> str:
|
| 124 |
-
msg = message.lower()
|
| 125 |
if msg.startswith("create record") or msg.startswith("create contact"):
|
| 126 |
-
return "To create a record,
|
|
|
|
|
|
|
| 127 |
if msg.startswith("help") or msg.startswith("what can you do"):
|
| 128 |
-
return "I can create/update/delete records in Zoho (create_record
|
| 129 |
-
return "(fallback)
|
| 130 |
|
| 131 |
# ----------------------------
|
| 132 |
-
# Zoho token &
|
| 133 |
# ----------------------------
|
| 134 |
-
|
| 135 |
def _get_valid_token_headers() -> dict:
|
|
|
|
| 136 |
token_url = "https://accounts.zoho.in/oauth/v2/token"
|
| 137 |
params = {
|
| 138 |
"refresh_token": REFRESH_TOKEN,
|
|
@@ -140,12 +160,25 @@ def _get_valid_token_headers() -> dict:
|
|
| 140 |
"client_secret": CLIENT_SECRET,
|
| 141 |
"grant_type": "refresh_token"
|
| 142 |
}
|
| 143 |
-
|
| 144 |
-
if
|
| 145 |
-
|
| 146 |
-
return {"Authorization": f"Zoho-oauthtoken {
|
| 147 |
else:
|
| 148 |
-
raise RuntimeError(f"Failed to refresh Zoho token: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
@mcp.tool()
|
| 151 |
def create_record(module_name: str, record_data: dict) -> str:
|
|
@@ -211,7 +244,10 @@ def delete_record(module_name: str, record_id: str) -> str:
|
|
| 211 |
|
| 212 |
@mcp.tool()
|
| 213 |
def create_invoice(data: dict) -> str:
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
| 215 |
try:
|
| 216 |
headers = _get_valid_token_headers()
|
| 217 |
url = f"{API_BASE}/invoices"
|
|
@@ -228,24 +264,29 @@ def create_invoice(data: dict) -> str:
|
|
| 228 |
@mcp.tool()
|
| 229 |
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
|
| 230 |
"""
|
| 231 |
-
Process
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
The tool will transform the local path into a file:// URL inside the returned structure.
|
| 235 |
"""
|
| 236 |
try:
|
| 237 |
if os.path.exists(file_path):
|
| 238 |
-
# Placeholder: replace with your OCR pipeline (pytesseract/pdf2image, etc.)
|
| 239 |
-
# For POC: return file:// URL and simulated fields
|
| 240 |
file_url = f"file://{file_path}"
|
|
|
|
| 241 |
extracted = {
|
| 242 |
"Name": "ACME Corp (simulated)",
|
| 243 |
"Email": "[email protected]",
|
|
|
|
| 244 |
"Total": "1234.00",
|
| 245 |
"Confidence": 0.88
|
| 246 |
}
|
| 247 |
_log_tool_call("process_document", True)
|
| 248 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
else:
|
| 250 |
_log_tool_call("process_document", False)
|
| 251 |
return {"status": "error", "error": "file not found", "file_path": file_path}
|
|
@@ -254,12 +295,11 @@ def process_document(file_path: str, target_module: Optional[str] = "Contacts")
|
|
| 254 |
return {"status": "error", "error": str(e)}
|
| 255 |
|
| 256 |
# ----------------------------
|
| 257 |
-
#
|
| 258 |
# ----------------------------
|
| 259 |
-
|
| 260 |
def try_parse_and_invoke_command(text: str):
|
| 261 |
-
"""
|
| 262 |
-
|
| 263 |
create_record MODULE {json}
|
| 264 |
create_invoice {json}
|
| 265 |
process_document /mnt/data/...
|
|
@@ -295,41 +335,70 @@ def try_parse_and_invoke_command(text: str):
|
|
| 295 |
return None
|
| 296 |
|
| 297 |
# ----------------------------
|
| 298 |
-
# LLM
|
| 299 |
# ----------------------------
|
| 300 |
-
|
| 301 |
def local_llm_generate(prompt: str) -> str:
|
| 302 |
if LLM_PIPELINE is not None:
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
else:
|
| 309 |
return rule_based_response(prompt)
|
| 310 |
|
| 311 |
# ----------------------------
|
| 312 |
-
#
|
| 313 |
# ----------------------------
|
| 314 |
-
|
| 315 |
def chat_handler(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
history = history or []
|
| 317 |
trimmed = (message or "").strip()
|
| 318 |
|
| 319 |
-
# 1)
|
| 320 |
-
|
| 321 |
-
if
|
| 322 |
-
return
|
| 323 |
|
| 324 |
-
# 2)
|
| 325 |
if trimmed.startswith("/mnt/data/"):
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
prompt = f"{system}\n{history_text}\nUser: {trimmed}\nAssistant:"
|
| 334 |
try:
|
| 335 |
resp = local_llm_generate(prompt)
|
|
@@ -341,14 +410,16 @@ def chat_handler(message, history):
|
|
| 341 |
# ----------------------------
|
| 342 |
# Gradio UI
|
| 343 |
# ----------------------------
|
| 344 |
-
|
| 345 |
def chat_interface():
|
| 346 |
-
return gr.ChatInterface(
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
# ----------------------------
|
| 349 |
-
#
|
| 350 |
# ----------------------------
|
| 351 |
if __name__ == "__main__":
|
| 352 |
-
print("
|
| 353 |
demo = chat_interface()
|
| 354 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
# app.py — MCP POC using local Hugging Face model (flan-t5 or other) or rule-based fallback.
|
| 2 |
+
# Place this file next to config.py. Do NOT store secrets here.
|
|
|
|
|
|
|
| 3 |
|
| 4 |
from mcp.server.fastmcp import FastMCP
|
| 5 |
from typing import Optional, List, Tuple, Any, Dict
|
|
|
|
| 12 |
import inspect
|
| 13 |
import re
|
| 14 |
|
| 15 |
+
# Optional transformers imports — load only if available
|
| 16 |
+
TRANSFORMERS_AVAILABLE = False
|
| 17 |
try:
|
| 18 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
| 19 |
TRANSFORMERS_AVAILABLE = True
|
| 20 |
except Exception:
|
| 21 |
TRANSFORMERS_AVAILABLE = False
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# ----------------------------
|
| 24 |
# Load config
|
| 25 |
# ----------------------------
|
|
|
|
| 29 |
CLIENT_SECRET,
|
| 30 |
REFRESH_TOKEN,
|
| 31 |
API_BASE,
|
| 32 |
+
LOCAL_MODEL, # e.g. "google/flan-t5-base" or None
|
| 33 |
+
LOCAL_TOKENIZER # optional: tokenizer name if different
|
| 34 |
)
|
| 35 |
except Exception:
|
| 36 |
raise SystemExit(
|
|
|
|
| 43 |
mcp = FastMCP("ZohoCRMAgent")
|
| 44 |
|
| 45 |
# ----------------------------
|
| 46 |
+
# Analytics / KPI logging (simple local JSON file)
|
| 47 |
# ----------------------------
|
| 48 |
ANALYTICS_PATH = "mcp_analytics.json"
|
| 49 |
|
| 50 |
def _init_analytics():
|
| 51 |
if not os.path.exists(ANALYTICS_PATH):
|
| 52 |
+
base = {
|
| 53 |
+
"tool_calls": {},
|
| 54 |
+
"llm_calls": 0,
|
| 55 |
+
"last_llm_confidence": None,
|
| 56 |
+
"created_at": time.time()
|
| 57 |
+
}
|
| 58 |
with open(ANALYTICS_PATH, "w") as f:
|
| 59 |
json.dump(base, f, indent=2)
|
| 60 |
|
|
|
|
| 61 |
def _log_tool_call(tool_name: str, success: bool = True):
|
| 62 |
try:
|
| 63 |
with open(ANALYTICS_PATH, "r") as f:
|
|
|
|
| 73 |
with open(ANALYTICS_PATH, "w") as f:
|
| 74 |
json.dump(data, f, indent=2)
|
| 75 |
|
|
|
|
| 76 |
def _log_llm_call(confidence: Optional[float] = None):
|
| 77 |
try:
|
| 78 |
with open(ANALYTICS_PATH, "r") as f:
|
|
|
|
| 88 |
_init_analytics()
|
| 89 |
|
| 90 |
# ----------------------------
|
| 91 |
+
# Local LLM pipeline initialization
|
| 92 |
# ----------------------------
|
| 93 |
LLM_PIPELINE = None
|
| 94 |
TOKENIZER = None
|
| 95 |
|
| 96 |
def init_local_model():
|
| 97 |
+
"""
|
| 98 |
+
Initialize local HF model pipeline depending on LOCAL_MODEL.
|
| 99 |
+
Supports seq2seq (flan/t5) and causal models.
|
| 100 |
+
If transformers is unavailable or LOCAL_MODEL is None, leaves LLM_PIPELINE as None.
|
| 101 |
+
"""
|
| 102 |
global LLM_PIPELINE, TOKENIZER
|
| 103 |
+
|
| 104 |
+
if not LOCAL_MODEL:
|
| 105 |
+
print("LOCAL_MODEL is None — using rule-based fallback.")
|
| 106 |
+
LLM_PIPELINE = None
|
| 107 |
+
return
|
| 108 |
+
|
| 109 |
+
if not TRANSFORMERS_AVAILABLE:
|
| 110 |
+
print("transformers not installed — using rule-based fallback.")
|
| 111 |
+
LLM_PIPELINE = None
|
| 112 |
return
|
| 113 |
+
|
| 114 |
try:
|
|
|
|
| 115 |
tokenizer_name = LOCAL_TOKENIZER or LOCAL_MODEL
|
| 116 |
+
|
| 117 |
+
# Detect seq2seq family (T5/Flan)
|
| 118 |
+
if any(x in LOCAL_MODEL.lower() for x in ["flan", "t5", "seq2seq"]):
|
| 119 |
+
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
|
| 120 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL)
|
| 121 |
+
LLM_PIPELINE = pipeline("text2text-generation", model=model, tokenizer=TOKENIZER)
|
| 122 |
+
print(f"Loaded seq2seq model pipeline for {LOCAL_MODEL}")
|
| 123 |
+
else:
|
| 124 |
+
# causal model path
|
| 125 |
+
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
|
| 126 |
+
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL)
|
| 127 |
+
LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
|
| 128 |
+
print(f"Loaded causal model pipeline for {LOCAL_MODEL}")
|
| 129 |
+
|
| 130 |
except Exception as e:
|
| 131 |
print("Failed to load local model:", e)
|
| 132 |
+
traceback.print_exc()
|
| 133 |
LLM_PIPELINE = None
|
| 134 |
|
| 135 |
+
# Try to init model at startup (may be slow)
|
| 136 |
init_local_model()
|
| 137 |
|
| 138 |
# ----------------------------
|
| 139 |
+
# Rule-based fallback responder
|
| 140 |
# ----------------------------
|
| 141 |
def rule_based_response(message: str) -> str:
|
| 142 |
+
msg = (message or "").strip().lower()
|
| 143 |
if msg.startswith("create record") or msg.startswith("create contact"):
|
| 144 |
+
return "To create a record, use the command: create_record MODULE_NAME {\"Field\": \"value\"}"
|
| 145 |
+
if msg.startswith("create_invoice"):
|
| 146 |
+
return "To create invoice: create_invoice {\"customer_id\": \"...\", \"line_items\": [...]} (JSON)"
|
| 147 |
if msg.startswith("help") or msg.startswith("what can you do"):
|
| 148 |
+
return "I can create/update/delete records in Zoho (create_record/update_record/delete_record) or process local files by pasting their path (/mnt/data/...)."
|
| 149 |
+
return "(fallback) No local LLM loaded. Use explicit commands like `create_record` or paste a /mnt/data/ path."
|
| 150 |
|
| 151 |
# ----------------------------
|
| 152 |
+
# Zoho token refresh & headers helper
|
| 153 |
# ----------------------------
|
|
|
|
| 154 |
def _get_valid_token_headers() -> dict:
|
| 155 |
+
# Note: region-specific account host may need .com or .eu — ensure API_BASE matches services used.
|
| 156 |
token_url = "https://accounts.zoho.in/oauth/v2/token"
|
| 157 |
params = {
|
| 158 |
"refresh_token": REFRESH_TOKEN,
|
|
|
|
| 160 |
"client_secret": CLIENT_SECRET,
|
| 161 |
"grant_type": "refresh_token"
|
| 162 |
}
|
| 163 |
+
r = requests.post(token_url, params=params, timeout=20)
|
| 164 |
+
if r.status_code == 200:
|
| 165 |
+
t = r.json().get("access_token")
|
| 166 |
+
return {"Authorization": f"Zoho-oauthtoken {t}"}
|
| 167 |
else:
|
| 168 |
+
raise RuntimeError(f"Failed to refresh Zoho token: {r.status_code} {r.text}")
|
| 169 |
+
|
| 170 |
+
# ----------------------------
|
| 171 |
+
# MCP tools: Zoho CRM & Books (CRUD + document processing)
|
| 172 |
+
# ----------------------------
|
| 173 |
+
@mcp.tool()
|
| 174 |
+
def authenticate_zoho() -> str:
|
| 175 |
+
try:
|
| 176 |
+
_ = _get_valid_token_headers()
|
| 177 |
+
_log_tool_call("authenticate_zoho", True)
|
| 178 |
+
return "Zoho token refreshed (ok)."
|
| 179 |
+
except Exception as e:
|
| 180 |
+
_log_tool_call("authenticate_zoho", False)
|
| 181 |
+
return f"Failed to authenticate: {e}"
|
| 182 |
|
| 183 |
@mcp.tool()
|
| 184 |
def create_record(module_name: str, record_data: dict) -> str:
|
|
|
|
| 244 |
|
| 245 |
@mcp.tool()
|
| 246 |
def create_invoice(data: dict) -> str:
|
| 247 |
+
"""
|
| 248 |
+
Creates an invoice in Zoho Books.
|
| 249 |
+
NOTE: Ensure API_BASE points to the Books base (e.g. https://books.zoho.in/api/v3) when calling invoices.
|
| 250 |
+
"""
|
| 251 |
try:
|
| 252 |
headers = _get_valid_token_headers()
|
| 253 |
url = f"{API_BASE}/invoices"
|
|
|
|
| 264 |
@mcp.tool()
|
| 265 |
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
|
| 266 |
"""
|
| 267 |
+
Process an uploaded file path (local path or URL). Per developer instruction,
|
| 268 |
+
we accept local paths like '/mnt/data/script_zoho_mcp' and return a file:// URL.
|
| 269 |
+
Replace the placeholder OCR block with your real OCR pipeline when ready.
|
|
|
|
| 270 |
"""
|
| 271 |
try:
|
| 272 |
if os.path.exists(file_path):
|
|
|
|
|
|
|
| 273 |
file_url = f"file://{file_path}"
|
| 274 |
+
# Placeholder extraction — replace with OCR + parsing logic
|
| 275 |
extracted = {
|
| 276 |
"Name": "ACME Corp (simulated)",
|
| 277 |
"Email": "[email protected]",
|
| 278 |
+
"Phone": "+91-99999-00000",
|
| 279 |
"Total": "1234.00",
|
| 280 |
"Confidence": 0.88
|
| 281 |
}
|
| 282 |
_log_tool_call("process_document", True)
|
| 283 |
+
return {
|
| 284 |
+
"status": "success",
|
| 285 |
+
"file": os.path.basename(file_path),
|
| 286 |
+
"file_url": file_url,
|
| 287 |
+
"target_module": target_module,
|
| 288 |
+
"extracted_data": extracted
|
| 289 |
+
}
|
| 290 |
else:
|
| 291 |
_log_tool_call("process_document", False)
|
| 292 |
return {"status": "error", "error": "file not found", "file_path": file_path}
|
|
|
|
| 295 |
return {"status": "error", "error": str(e)}
|
| 296 |
|
| 297 |
# ----------------------------
|
| 298 |
+
# Simple local command parser to call tools explicitly from chat (POC)
|
| 299 |
# ----------------------------
|
|
|
|
| 300 |
def try_parse_and_invoke_command(text: str):
|
| 301 |
+
"""
|
| 302 |
+
Very small parser for explicit chat commands:
|
| 303 |
create_record MODULE {json}
|
| 304 |
create_invoice {json}
|
| 305 |
process_document /mnt/data/...
|
|
|
|
| 335 |
return None
|
| 336 |
|
| 337 |
# ----------------------------
|
| 338 |
+
# Local LLM / fallback generator
|
| 339 |
# ----------------------------
|
|
|
|
| 340 |
def local_llm_generate(prompt: str) -> str:
|
| 341 |
if LLM_PIPELINE is not None:
|
| 342 |
+
try:
|
| 343 |
+
# For seq2seq (text2text) the pipeline returns 'generated_text'
|
| 344 |
+
out = LLM_PIPELINE(prompt, max_new_tokens=256)
|
| 345 |
+
if isinstance(out, list) and len(out) > 0:
|
| 346 |
+
# text2text pipelines often provide 'generated_text'
|
| 347 |
+
if isinstance(out[0], dict):
|
| 348 |
+
return out[0].get("generated_text") or out[0].get("text") or str(out[0])
|
| 349 |
+
return str(out[0])
|
| 350 |
+
return str(out)
|
| 351 |
+
except Exception as e:
|
| 352 |
+
print("LLM pipeline error:", e)
|
| 353 |
+
traceback.print_exc()
|
| 354 |
+
return rule_based_response(prompt)
|
| 355 |
else:
|
| 356 |
return rule_based_response(prompt)
|
| 357 |
|
| 358 |
# ----------------------------
|
| 359 |
+
# Gradio chat handler (accepts message, history)
|
| 360 |
# ----------------------------
|
|
|
|
| 361 |
def chat_handler(message, history):
|
| 362 |
+
"""
|
| 363 |
+
Gradio ChatInterface calls this with (message, history).
|
| 364 |
+
If the message is a local file path (starting with /mnt/data/), we pass it unchanged
|
| 365 |
+
to process_document() — this satisfies the developer instruction to send the path as the URL.
|
| 366 |
+
Otherwise, try explicit commands, then local LLM fallback.
|
| 367 |
+
"""
|
| 368 |
history = history or []
|
| 369 |
trimmed = (message or "").strip()
|
| 370 |
|
| 371 |
+
# 1) explicit commands
|
| 372 |
+
cmd = try_parse_and_invoke_command(trimmed)
|
| 373 |
+
if cmd is not None:
|
| 374 |
+
return cmd
|
| 375 |
|
| 376 |
+
# 2) developer convenience: local path handling
|
| 377 |
if trimmed.startswith("/mnt/data/"):
|
| 378 |
+
try:
|
| 379 |
+
doc = process_document(trimmed)
|
| 380 |
+
return f"Processed file {doc.get('file')}. Extracted: {json.dumps(doc.get('extracted_data'), ensure_ascii=False)}"
|
| 381 |
+
except Exception as e:
|
| 382 |
+
return f"Error processing document: {e}"
|
| 383 |
+
|
| 384 |
+
# 3) otherwise call local LLM (if available) or fallback
|
| 385 |
+
# build a compact prompt including a short system instruction and history
|
| 386 |
+
history_text = ""
|
| 387 |
+
for pair in history:
|
| 388 |
+
try:
|
| 389 |
+
user_turn, assistant_turn = pair[0], pair[1]
|
| 390 |
+
except Exception:
|
| 391 |
+
if isinstance(pair, dict):
|
| 392 |
+
user_turn = pair.get("user", "")
|
| 393 |
+
assistant_turn = pair.get("assistant", "")
|
| 394 |
+
else:
|
| 395 |
+
user_turn, assistant_turn = "", ""
|
| 396 |
+
if user_turn:
|
| 397 |
+
history_text += f"User: {user_turn}\n"
|
| 398 |
+
if assistant_turn:
|
| 399 |
+
history_text += f"Assistant: {assistant_turn}\n"
|
| 400 |
+
|
| 401 |
+
system = "You are a Zoho assistant that can call local MCP tools when asked. Keep replies short and actionable."
|
| 402 |
prompt = f"{system}\n{history_text}\nUser: {trimmed}\nAssistant:"
|
| 403 |
try:
|
| 404 |
resp = local_llm_generate(prompt)
|
|
|
|
| 410 |
# ----------------------------
|
| 411 |
# Gradio UI
|
| 412 |
# ----------------------------
|
|
|
|
| 413 |
def chat_interface():
|
| 414 |
+
return gr.ChatInterface(
|
| 415 |
+
fn=chat_handler,
|
| 416 |
+
textbox=gr.Textbox(placeholder="Ask me to create contacts, invoices, or paste /mnt/data/... for dev.")
|
| 417 |
+
)
|
| 418 |
|
| 419 |
# ----------------------------
|
| 420 |
+
# Entrypoint
|
| 421 |
# ----------------------------
|
| 422 |
if __name__ == "__main__":
|
| 423 |
+
print("[startup] Launching Gradio UI + FastMCP server (local LLM mode).")
|
| 424 |
demo = chat_interface()
|
| 425 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|