Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
a0ba53d
1
Parent(s):
cd2003a
updating scripts and weekly data
Browse files- app.py +6 -10
- data/closed_markets_div.parquet +2 -2
- data/daily_info.parquet +2 -2
- data/unknown_daily_traders.parquet +2 -2
- data/unknown_traders.parquet +2 -2
- data/weekly_mech_calls.parquet +2 -2
- notebooks/unknown_traders.ipynb +303 -0
- scripts/closed_markets_divergence.py +3 -3
- scripts/metrics.py +3 -9
- scripts/num_mech_calls.py +17 -14
app.py
CHANGED
|
@@ -285,19 +285,15 @@ with demo:
|
|
| 285 |
outputs=trader_u_markets_plot,
|
| 286 |
)
|
| 287 |
with gr.TabItem("π
Daily metrics"):
|
| 288 |
-
current_week_trades = get_current_week_data(trades_df=traders_data)
|
| 289 |
live_trades_current_week = get_current_week_data(trades_df=daily_info)
|
| 290 |
-
if len(
|
| 291 |
-
|
| 292 |
-
compute_daily_metrics_by_market_creator(
|
|
|
|
|
|
|
| 293 |
)
|
| 294 |
else:
|
| 295 |
-
|
| 296 |
-
daily_prof_metrics_by_market_creator = pd.DataFrame()
|
| 297 |
-
live_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
|
| 298 |
-
live_trades_current_week, trader_filter=None, live_metrics=True
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
with gr.Row():
|
| 302 |
gr.Markdown("# Daily live metrics for all trades")
|
| 303 |
with gr.Row():
|
|
|
|
| 285 |
outputs=trader_u_markets_plot,
|
| 286 |
)
|
| 287 |
with gr.TabItem("π
Daily metrics"):
|
|
|
|
| 288 |
live_trades_current_week = get_current_week_data(trades_df=daily_info)
|
| 289 |
+
if len(live_trades_current_week) > 0:
|
| 290 |
+
live_metrics_by_market_creator = (
|
| 291 |
+
compute_daily_metrics_by_market_creator(
|
| 292 |
+
live_trades_current_week, trader_filter=None, live_metrics=True
|
| 293 |
+
)
|
| 294 |
)
|
| 295 |
else:
|
| 296 |
+
live_metrics_by_market_creator = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
with gr.Row():
|
| 298 |
gr.Markdown("# Daily live metrics for all trades")
|
| 299 |
with gr.Row():
|
data/closed_markets_div.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3eced4105a55dfb65e767f6ca4dd876a9d5ff0f0247b8ca613f5cad5fe00d7e7
|
| 3 |
+
size 56966
|
data/daily_info.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9f224f954dd108e164b12763dd628e05a5f17a94fd2422d9853f60f470a690d
|
| 3 |
+
size 697569
|
data/unknown_daily_traders.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45f38b60d39b31a089052b97cddd6fe27bf94b64f62b1eeab5947881fa590665
|
| 3 |
+
size 38656
|
data/unknown_traders.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0164ef5ecaf966a5dcc677d96bba860c344f43cf53e237b6687b797502bd5e36
|
| 3 |
+
size 184719
|
data/weekly_mech_calls.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06cafb7b09261c509c443fce63f245203341c691eeda2e4ade1d2d1b69335818
|
| 3 |
+
size 55489
|
notebooks/unknown_traders.ipynb
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd\n",
|
| 10 |
+
"import matplotlib.pyplot as plt\n",
|
| 11 |
+
"import seaborn as sns\n",
|
| 12 |
+
"import gc"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 2,
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"unknown_traders = pd.read_parquet(\"../data/unknown_traders.parquet\")"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 3,
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [
|
| 29 |
+
{
|
| 30 |
+
"data": {
|
| 31 |
+
"text/html": [
|
| 32 |
+
"<div>\n",
|
| 33 |
+
"<style scoped>\n",
|
| 34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 35 |
+
" vertical-align: middle;\n",
|
| 36 |
+
" }\n",
|
| 37 |
+
"\n",
|
| 38 |
+
" .dataframe tbody tr th {\n",
|
| 39 |
+
" vertical-align: top;\n",
|
| 40 |
+
" }\n",
|
| 41 |
+
"\n",
|
| 42 |
+
" .dataframe thead th {\n",
|
| 43 |
+
" text-align: right;\n",
|
| 44 |
+
" }\n",
|
| 45 |
+
"</style>\n",
|
| 46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 47 |
+
" <thead>\n",
|
| 48 |
+
" <tr style=\"text-align: right;\">\n",
|
| 49 |
+
" <th></th>\n",
|
| 50 |
+
" <th>trader_address</th>\n",
|
| 51 |
+
" <th>market_creator</th>\n",
|
| 52 |
+
" <th>trade_id</th>\n",
|
| 53 |
+
" <th>creation_timestamp</th>\n",
|
| 54 |
+
" <th>title</th>\n",
|
| 55 |
+
" <th>market_status</th>\n",
|
| 56 |
+
" <th>collateral_amount</th>\n",
|
| 57 |
+
" <th>outcome_index</th>\n",
|
| 58 |
+
" <th>trade_fee_amount</th>\n",
|
| 59 |
+
" <th>outcomes_tokens_traded</th>\n",
|
| 60 |
+
" <th>...</th>\n",
|
| 61 |
+
" <th>is_invalid</th>\n",
|
| 62 |
+
" <th>winning_trade</th>\n",
|
| 63 |
+
" <th>earnings</th>\n",
|
| 64 |
+
" <th>redeemed</th>\n",
|
| 65 |
+
" <th>redeemed_amount</th>\n",
|
| 66 |
+
" <th>num_mech_calls</th>\n",
|
| 67 |
+
" <th>mech_fee_amount</th>\n",
|
| 68 |
+
" <th>net_earnings</th>\n",
|
| 69 |
+
" <th>roi</th>\n",
|
| 70 |
+
" <th>staking</th>\n",
|
| 71 |
+
" </tr>\n",
|
| 72 |
+
" </thead>\n",
|
| 73 |
+
" <tbody>\n",
|
| 74 |
+
" <tr>\n",
|
| 75 |
+
" <th>0</th>\n",
|
| 76 |
+
" <td>0x23522318aebb55b55879b60fb3ad4682abc6cc2f</td>\n",
|
| 77 |
+
" <td>quickstart</td>\n",
|
| 78 |
+
" <td>0xeeaadfc4d0ef3f3bb1c430bc96657ed01a52e3e20x23...</td>\n",
|
| 79 |
+
" <td>2024-12-23 12:36:05+00:00</td>\n",
|
| 80 |
+
" <td>Will any additional Amazon facilities join the...</td>\n",
|
| 81 |
+
" <td>CLOSED</td>\n",
|
| 82 |
+
" <td>0.401540</td>\n",
|
| 83 |
+
" <td>0</td>\n",
|
| 84 |
+
" <td>0.004015</td>\n",
|
| 85 |
+
" <td>0.939802</td>\n",
|
| 86 |
+
" <td>...</td>\n",
|
| 87 |
+
" <td>False</td>\n",
|
| 88 |
+
" <td>True</td>\n",
|
| 89 |
+
" <td>0.939802</td>\n",
|
| 90 |
+
" <td>True</td>\n",
|
| 91 |
+
" <td>0.939802</td>\n",
|
| 92 |
+
" <td>0</td>\n",
|
| 93 |
+
" <td>0.0</td>\n",
|
| 94 |
+
" <td>0.534247</td>\n",
|
| 95 |
+
" <td>1.317323</td>\n",
|
| 96 |
+
" <td>non_Olas</td>\n",
|
| 97 |
+
" </tr>\n",
|
| 98 |
+
" <tr>\n",
|
| 99 |
+
" <th>1</th>\n",
|
| 100 |
+
" <td>0x8c4abc95e0091bf3bffe723d2b3c958edf642549</td>\n",
|
| 101 |
+
" <td>quickstart</td>\n",
|
| 102 |
+
" <td>0x6df8ac2c78c8a801d6b6f30e19d3c193daf54f1e0x8c...</td>\n",
|
| 103 |
+
" <td>2024-12-24 07:22:50+00:00</td>\n",
|
| 104 |
+
" <td>Will the World Health Organization issue an of...</td>\n",
|
| 105 |
+
" <td>CLOSED</td>\n",
|
| 106 |
+
" <td>0.298503</td>\n",
|
| 107 |
+
" <td>0</td>\n",
|
| 108 |
+
" <td>0.002985</td>\n",
|
| 109 |
+
" <td>0.624681</td>\n",
|
| 110 |
+
" <td>...</td>\n",
|
| 111 |
+
" <td>False</td>\n",
|
| 112 |
+
" <td>True</td>\n",
|
| 113 |
+
" <td>0.624681</td>\n",
|
| 114 |
+
" <td>True</td>\n",
|
| 115 |
+
" <td>0.624681</td>\n",
|
| 116 |
+
" <td>0</td>\n",
|
| 117 |
+
" <td>0.0</td>\n",
|
| 118 |
+
" <td>0.323193</td>\n",
|
| 119 |
+
" <td>1.071994</td>\n",
|
| 120 |
+
" <td>non_Olas</td>\n",
|
| 121 |
+
" </tr>\n",
|
| 122 |
+
" <tr>\n",
|
| 123 |
+
" <th>2</th>\n",
|
| 124 |
+
" <td>0xb3ead49f4797662511816d2798f774dee3603185</td>\n",
|
| 125 |
+
" <td>quickstart</td>\n",
|
| 126 |
+
" <td>0x4cb63dbf490e1f8f7c10d1e62be7ae6bbbb6d0790xb3...</td>\n",
|
| 127 |
+
" <td>2024-12-23 12:50:40+00:00</td>\n",
|
| 128 |
+
" <td>Will Dominion Energy announce any additional p...</td>\n",
|
| 129 |
+
" <td>CLOSED</td>\n",
|
| 130 |
+
" <td>0.423050</td>\n",
|
| 131 |
+
" <td>1</td>\n",
|
| 132 |
+
" <td>0.004230</td>\n",
|
| 133 |
+
" <td>0.687175</td>\n",
|
| 134 |
+
" <td>...</td>\n",
|
| 135 |
+
" <td>False</td>\n",
|
| 136 |
+
" <td>False</td>\n",
|
| 137 |
+
" <td>0.000000</td>\n",
|
| 138 |
+
" <td>False</td>\n",
|
| 139 |
+
" <td>0.000000</td>\n",
|
| 140 |
+
" <td>0</td>\n",
|
| 141 |
+
" <td>0.0</td>\n",
|
| 142 |
+
" <td>-0.427280</td>\n",
|
| 143 |
+
" <td>-1.000000</td>\n",
|
| 144 |
+
" <td>non_Olas</td>\n",
|
| 145 |
+
" </tr>\n",
|
| 146 |
+
" <tr>\n",
|
| 147 |
+
" <th>3</th>\n",
|
| 148 |
+
" <td>0x2dd9f5678484c1f59f97ed334725858b938b4102</td>\n",
|
| 149 |
+
" <td>quickstart</td>\n",
|
| 150 |
+
" <td>0x005e5be235ba39c5f17622d25e77557ee79a2cba0x2d...</td>\n",
|
| 151 |
+
" <td>2024-12-22 02:40:35+00:00</td>\n",
|
| 152 |
+
" <td>Will the Federal Reserve signal a plan to slow...</td>\n",
|
| 153 |
+
" <td>CLOSED</td>\n",
|
| 154 |
+
" <td>1.568561</td>\n",
|
| 155 |
+
" <td>1</td>\n",
|
| 156 |
+
" <td>0.015686</td>\n",
|
| 157 |
+
" <td>2.474096</td>\n",
|
| 158 |
+
" <td>...</td>\n",
|
| 159 |
+
" <td>False</td>\n",
|
| 160 |
+
" <td>False</td>\n",
|
| 161 |
+
" <td>0.000000</td>\n",
|
| 162 |
+
" <td>True</td>\n",
|
| 163 |
+
" <td>0.000000</td>\n",
|
| 164 |
+
" <td>0</td>\n",
|
| 165 |
+
" <td>0.0</td>\n",
|
| 166 |
+
" <td>-1.584247</td>\n",
|
| 167 |
+
" <td>-1.000000</td>\n",
|
| 168 |
+
" <td>non_Olas</td>\n",
|
| 169 |
+
" </tr>\n",
|
| 170 |
+
" <tr>\n",
|
| 171 |
+
" <th>4</th>\n",
|
| 172 |
+
" <td>0x2dd9f5678484c1f59f97ed334725858b938b4102</td>\n",
|
| 173 |
+
" <td>quickstart</td>\n",
|
| 174 |
+
" <td>0x0080b3768232e8a2f187eaaf342923034275e0b90x2d...</td>\n",
|
| 175 |
+
" <td>2024-12-13 04:32:35+00:00</td>\n",
|
| 176 |
+
" <td>Will Russia officially confirm Bashar al-Assad...</td>\n",
|
| 177 |
+
" <td>CLOSED</td>\n",
|
| 178 |
+
" <td>2.677632</td>\n",
|
| 179 |
+
" <td>0</td>\n",
|
| 180 |
+
" <td>0.026776</td>\n",
|
| 181 |
+
" <td>5.135035</td>\n",
|
| 182 |
+
" <td>...</td>\n",
|
| 183 |
+
" <td>False</td>\n",
|
| 184 |
+
" <td>True</td>\n",
|
| 185 |
+
" <td>5.135035</td>\n",
|
| 186 |
+
" <td>True</td>\n",
|
| 187 |
+
" <td>5.135035</td>\n",
|
| 188 |
+
" <td>0</td>\n",
|
| 189 |
+
" <td>0.0</td>\n",
|
| 190 |
+
" <td>2.430627</td>\n",
|
| 191 |
+
" <td>0.898765</td>\n",
|
| 192 |
+
" <td>non_Olas</td>\n",
|
| 193 |
+
" </tr>\n",
|
| 194 |
+
" </tbody>\n",
|
| 195 |
+
"</table>\n",
|
| 196 |
+
"<p>5 rows Γ 21 columns</p>\n",
|
| 197 |
+
"</div>"
|
| 198 |
+
],
|
| 199 |
+
"text/plain": [
|
| 200 |
+
" trader_address market_creator \\\n",
|
| 201 |
+
"0 0x23522318aebb55b55879b60fb3ad4682abc6cc2f quickstart \n",
|
| 202 |
+
"1 0x8c4abc95e0091bf3bffe723d2b3c958edf642549 quickstart \n",
|
| 203 |
+
"2 0xb3ead49f4797662511816d2798f774dee3603185 quickstart \n",
|
| 204 |
+
"3 0x2dd9f5678484c1f59f97ed334725858b938b4102 quickstart \n",
|
| 205 |
+
"4 0x2dd9f5678484c1f59f97ed334725858b938b4102 quickstart \n",
|
| 206 |
+
"\n",
|
| 207 |
+
" trade_id \\\n",
|
| 208 |
+
"0 0xeeaadfc4d0ef3f3bb1c430bc96657ed01a52e3e20x23... \n",
|
| 209 |
+
"1 0x6df8ac2c78c8a801d6b6f30e19d3c193daf54f1e0x8c... \n",
|
| 210 |
+
"2 0x4cb63dbf490e1f8f7c10d1e62be7ae6bbbb6d0790xb3... \n",
|
| 211 |
+
"3 0x005e5be235ba39c5f17622d25e77557ee79a2cba0x2d... \n",
|
| 212 |
+
"4 0x0080b3768232e8a2f187eaaf342923034275e0b90x2d... \n",
|
| 213 |
+
"\n",
|
| 214 |
+
" creation_timestamp \\\n",
|
| 215 |
+
"0 2024-12-23 12:36:05+00:00 \n",
|
| 216 |
+
"1 2024-12-24 07:22:50+00:00 \n",
|
| 217 |
+
"2 2024-12-23 12:50:40+00:00 \n",
|
| 218 |
+
"3 2024-12-22 02:40:35+00:00 \n",
|
| 219 |
+
"4 2024-12-13 04:32:35+00:00 \n",
|
| 220 |
+
"\n",
|
| 221 |
+
" title market_status \\\n",
|
| 222 |
+
"0 Will any additional Amazon facilities join the... CLOSED \n",
|
| 223 |
+
"1 Will the World Health Organization issue an of... CLOSED \n",
|
| 224 |
+
"2 Will Dominion Energy announce any additional p... CLOSED \n",
|
| 225 |
+
"3 Will the Federal Reserve signal a plan to slow... CLOSED \n",
|
| 226 |
+
"4 Will Russia officially confirm Bashar al-Assad... CLOSED \n",
|
| 227 |
+
"\n",
|
| 228 |
+
" collateral_amount outcome_index trade_fee_amount outcomes_tokens_traded \\\n",
|
| 229 |
+
"0 0.401540 0 0.004015 0.939802 \n",
|
| 230 |
+
"1 0.298503 0 0.002985 0.624681 \n",
|
| 231 |
+
"2 0.423050 1 0.004230 0.687175 \n",
|
| 232 |
+
"3 1.568561 1 0.015686 2.474096 \n",
|
| 233 |
+
"4 2.677632 0 0.026776 5.135035 \n",
|
| 234 |
+
"\n",
|
| 235 |
+
" ... is_invalid winning_trade earnings redeemed redeemed_amount \\\n",
|
| 236 |
+
"0 ... False True 0.939802 True 0.939802 \n",
|
| 237 |
+
"1 ... False True 0.624681 True 0.624681 \n",
|
| 238 |
+
"2 ... False False 0.000000 False 0.000000 \n",
|
| 239 |
+
"3 ... False False 0.000000 True 0.000000 \n",
|
| 240 |
+
"4 ... False True 5.135035 True 5.135035 \n",
|
| 241 |
+
"\n",
|
| 242 |
+
" num_mech_calls mech_fee_amount net_earnings roi staking \n",
|
| 243 |
+
"0 0 0.0 0.534247 1.317323 non_Olas \n",
|
| 244 |
+
"1 0 0.0 0.323193 1.071994 non_Olas \n",
|
| 245 |
+
"2 0 0.0 -0.427280 -1.000000 non_Olas \n",
|
| 246 |
+
"3 0 0.0 -1.584247 -1.000000 non_Olas \n",
|
| 247 |
+
"4 0 0.0 2.430627 0.898765 non_Olas \n",
|
| 248 |
+
"\n",
|
| 249 |
+
"[5 rows x 21 columns]"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
"execution_count": 3,
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"output_type": "execute_result"
|
| 255 |
+
}
|
| 256 |
+
],
|
| 257 |
+
"source": [
|
| 258 |
+
"unknown_traders.head()"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "code",
|
| 263 |
+
"execution_count": 4,
|
| 264 |
+
"metadata": {},
|
| 265 |
+
"outputs": [
|
| 266 |
+
{
|
| 267 |
+
"data": {
|
| 268 |
+
"text/plain": [
|
| 269 |
+
"1568"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
"execution_count": 4,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"output_type": "execute_result"
|
| 275 |
+
}
|
| 276 |
+
],
|
| 277 |
+
"source": [
|
| 278 |
+
"len(unknown_traders)"
|
| 279 |
+
]
|
| 280 |
+
}
|
| 281 |
+
],
|
| 282 |
+
"metadata": {
|
| 283 |
+
"kernelspec": {
|
| 284 |
+
"display_name": "hf_dashboards",
|
| 285 |
+
"language": "python",
|
| 286 |
+
"name": "python3"
|
| 287 |
+
},
|
| 288 |
+
"language_info": {
|
| 289 |
+
"codemirror_mode": {
|
| 290 |
+
"name": "ipython",
|
| 291 |
+
"version": 3
|
| 292 |
+
},
|
| 293 |
+
"file_extension": ".py",
|
| 294 |
+
"mimetype": "text/x-python",
|
| 295 |
+
"name": "python",
|
| 296 |
+
"nbconvert_exporter": "python",
|
| 297 |
+
"pygments_lexer": "ipython3",
|
| 298 |
+
"version": "3.12.2"
|
| 299 |
+
}
|
| 300 |
+
},
|
| 301 |
+
"nbformat": 4,
|
| 302 |
+
"nbformat_minor": 2
|
| 303 |
+
}
|
scripts/closed_markets_divergence.py
CHANGED
|
@@ -85,9 +85,9 @@ def collect_liquidity_info(
|
|
| 85 |
if not tokens_info:
|
| 86 |
return None
|
| 87 |
|
| 88 |
-
# the
|
| 89 |
-
|
| 90 |
-
token_amounts = [int(x) for x in
|
| 91 |
time.sleep(IPFS_POLL_INTERVAL)
|
| 92 |
return {fpmm_id: token_amounts}
|
| 93 |
|
|
|
|
| 85 |
if not tokens_info:
|
| 86 |
return None
|
| 87 |
|
| 88 |
+
# the last item is the final information of the market
|
| 89 |
+
last_info = tokens_info[-1]
|
| 90 |
+
token_amounts = [int(x) for x in last_info["outcomeTokenAmounts"]]
|
| 91 |
time.sleep(IPFS_POLL_INTERVAL)
|
| 92 |
return {fpmm_id: token_amounts}
|
| 93 |
|
scripts/metrics.py
CHANGED
|
@@ -29,7 +29,7 @@ def compute_metrics(
|
|
| 29 |
total_nr_mech_calls_all_markets = 0
|
| 30 |
else:
|
| 31 |
total_nr_mech_calls_all_markets = get_weekly_total_mech_calls(trader_data)
|
| 32 |
-
|
| 33 |
agg_metrics["bet_amount"] = total_bet_amounts
|
| 34 |
agg_metrics["nr_mech_calls"] = total_nr_mech_calls_all_markets
|
| 35 |
agg_metrics["staking"] = trader_data.iloc[0].staking
|
|
@@ -39,22 +39,16 @@ def compute_metrics(
|
|
| 39 |
total_earnings = trader_data.earnings.sum()
|
| 40 |
agg_metrics["earnings"] = total_earnings
|
| 41 |
total_fee_amounts = trader_data.mech_fee_amount.sum()
|
| 42 |
-
|
| 43 |
-
total_bet_amounts + total_fee_amounts + previous_total * DEFAULT_MECH_FEE
|
| 44 |
-
)
|
| 45 |
total_costs = (
|
| 46 |
total_bet_amounts
|
| 47 |
+ total_fee_amounts
|
| 48 |
+ (total_nr_mech_calls_all_markets * DEFAULT_MECH_FEE)
|
| 49 |
)
|
| 50 |
total_net_earnings = total_earnings - total_costs
|
| 51 |
-
previous_net_earnings = trader_data.net_earnings.sum()
|
| 52 |
agg_metrics["net_earnings"] = total_net_earnings
|
| 53 |
agg_metrics["roi"] = total_net_earnings / total_costs
|
| 54 |
-
|
| 55 |
-
agg_metrics["roi_diff_perc"] = 100.0 * (
|
| 56 |
-
(agg_metrics["roi"] - agg_metrics["previous_roi"]) / abs(agg_metrics["roi"])
|
| 57 |
-
)
|
| 58 |
return agg_metrics
|
| 59 |
|
| 60 |
|
|
|
|
| 29 |
total_nr_mech_calls_all_markets = 0
|
| 30 |
else:
|
| 31 |
total_nr_mech_calls_all_markets = get_weekly_total_mech_calls(trader_data)
|
| 32 |
+
|
| 33 |
agg_metrics["bet_amount"] = total_bet_amounts
|
| 34 |
agg_metrics["nr_mech_calls"] = total_nr_mech_calls_all_markets
|
| 35 |
agg_metrics["staking"] = trader_data.iloc[0].staking
|
|
|
|
| 39 |
total_earnings = trader_data.earnings.sum()
|
| 40 |
agg_metrics["earnings"] = total_earnings
|
| 41 |
total_fee_amounts = trader_data.mech_fee_amount.sum()
|
| 42 |
+
|
|
|
|
|
|
|
| 43 |
total_costs = (
|
| 44 |
total_bet_amounts
|
| 45 |
+ total_fee_amounts
|
| 46 |
+ (total_nr_mech_calls_all_markets * DEFAULT_MECH_FEE)
|
| 47 |
)
|
| 48 |
total_net_earnings = total_earnings - total_costs
|
|
|
|
| 49 |
agg_metrics["net_earnings"] = total_net_earnings
|
| 50 |
agg_metrics["roi"] = total_net_earnings / total_costs
|
| 51 |
+
|
|
|
|
|
|
|
|
|
|
| 52 |
return agg_metrics
|
| 53 |
|
| 54 |
|
scripts/num_mech_calls.py
CHANGED
|
@@ -1,5 +1,10 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
from tqdm import tqdm
|
| 5 |
|
|
@@ -55,30 +60,28 @@ def compute_total_mech_calls():
|
|
| 55 |
except Exception as e:
|
| 56 |
print(f"Error updating the invalid trades parquet {e}")
|
| 57 |
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
-
print("Reading trades weekly info file")
|
| 60 |
-
fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
|
| 61 |
fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
|
| 62 |
lambda x: transform_to_datetime(x)
|
| 63 |
)
|
| 64 |
-
fpmmTrades["creation_timestamp"] = pd.to_datetime(
|
| 65 |
-
fpmmTrades["creationTimestamp"]
|
| 66 |
-
)
|
| 67 |
-
fpmmTrades["creation_date"] = fpmmTrades["creation_timestamp"].dt.date
|
| 68 |
-
fpmmTrades = fpmmTrades.sort_values(by="creation_timestamp", ascending=True)
|
| 69 |
-
fpmmTrades["month_year_week"] = (
|
| 70 |
-
fpmmTrades["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
except Exception as e:
|
| 74 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
nr_traders = len(fpmmTrades["trader_address"].unique())
|
| 77 |
all_mech_calls = []
|
| 78 |
for trader in tqdm(
|
| 79 |
fpmmTrades["trader_address"].unique(),
|
| 80 |
total=nr_traders,
|
| 81 |
-
desc="creating mech calls
|
| 82 |
):
|
| 83 |
# compute the mech calls estimations for each trader
|
| 84 |
all_trades = fpmmTrades[fpmmTrades["trader_address"] == trader]
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
|
| 3 |
+
try:
|
| 4 |
+
from utils import DATA_DIR, TMP_DIR
|
| 5 |
+
except ImportError:
|
| 6 |
+
from scripts.utils import DATA_DIR, TMP_DIR
|
| 7 |
+
|
| 8 |
from datetime import datetime, timezone
|
| 9 |
from tqdm import tqdm
|
| 10 |
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
print(f"Error updating the invalid trades parquet {e}")
|
| 62 |
|
| 63 |
+
print("Reading trades weekly info file")
|
| 64 |
+
fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
|
| 65 |
try:
|
|
|
|
|
|
|
| 66 |
fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
|
| 67 |
lambda x: transform_to_datetime(x)
|
| 68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
+
print(f"Transformation not needed")
|
| 71 |
+
|
| 72 |
+
fpmmTrades["creation_timestamp"] = pd.to_datetime(fpmmTrades["creationTimestamp"])
|
| 73 |
+
fpmmTrades["creation_date"] = fpmmTrades["creation_timestamp"].dt.date
|
| 74 |
+
fpmmTrades = fpmmTrades.sort_values(by="creation_timestamp", ascending=True)
|
| 75 |
+
fpmmTrades["month_year_week"] = (
|
| 76 |
+
fpmmTrades["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 77 |
+
)
|
| 78 |
|
| 79 |
nr_traders = len(fpmmTrades["trader_address"].unique())
|
| 80 |
all_mech_calls = []
|
| 81 |
for trader in tqdm(
|
| 82 |
fpmmTrades["trader_address"].unique(),
|
| 83 |
total=nr_traders,
|
| 84 |
+
desc="creating weekly mech calls dataframe",
|
| 85 |
):
|
| 86 |
# compute the mech calls estimations for each trader
|
| 87 |
all_trades = fpmmTrades[fpmmTrades["trader_address"] == trader]
|