""" ML Prediction Service with LAZY LOADING & REMOTE MODEL FETCHING Enhanced with: SHAP Explanation, N-gram Analysis, Keyword Detection """ import os import re from typing import List, Dict, Any, Optional from collections import Counter # [QUAN TRỌNG] Import thư viện để tải model từ kho riêng from huggingface_hub import hf_hub_download # Only set HF cache for local development # if not os.getenv("RENDER") and not os.getenv("SPACE_ID"): # os.environ['HF_HOME'] = 'G:/huggingface_cache' class KeywordAnalyzer: """Analyzes text for positive/negative keywords""" def __init__(self): # Vietnamese positive keywords self.positive_words = [ 'tốt', 'đẹp', 'tuyệt vời', 'xuất sắc', 'hoàn hảo', 'chất lượng', 'nhanh', 'tiện', 'ưng', 'hài lòng', 'thích', 'yêu', 'tuyệt', 'ok', 'ổn', 'được', 'giỏi', 'hay', 'ngon', 'xịn', 'đỉnh', 'pro', 'amazing', 'perfect', 'good', 'great', 'excellent', 'rẻ', 'đáng tiền', 'đáng mua', 'recommend', 'khuyên', 'nên mua', 'chính hãng', 'uy tín', 'nhiệt tình', 'chu đáo', 'cảm ơn', 'giao nhanh', 'đóng gói cẩn thận', 'đúng mô tả', 'như hình', 'rất tốt', 'rất đẹp', 'rất ưng', 'rất thích', 'siêu', 'quá đẹp' ] # Vietnamese negative keywords self.negative_words = [ 'tệ', 'xấu', 'kém', 'dở', 'tồi', 'thất vọng', 'chán', 'chậm', 'lâu', 'lỗi', 'hỏng', 'vỡ', 'rách', 'bẩn', 'giả', 'fake', 'lừa', 'đắt', 'không đáng', 'phí tiền', 'bad', 'poor', 'terrible', 'awful', 'worst', 'horrible', 'không thích', 'không ưng', 'không hài lòng', 'không như', 'trả lại', 'hoàn tiền', 'không đúng', 'sai', 'thiếu', 'giao chậm', 'đóng gói ẩu', 'móp', 'méo', 'cũ', 'rất tệ', 'quá tệ', 'không tốt', 'không ok', 'dở ẹt', 'rất xấu' ] def analyze(self, text: str) -> Dict[str, Any]: """Analyze text for positive/negative keywords""" text_lower = text.lower() found_positive = [] found_negative = [] for word in self.positive_words: if word.lower() in text_lower: found_positive.append(word) for word in self.negative_words: if word.lower() in text_lower: found_negative.append(word) return { 'positive_keywords': found_positive, 'negative_keywords': found_negative, 'positive_count': len(found_positive), 'negative_count': len(found_negative) } class NgramAnalyzer: """Analyzes text for n-grams""" def __init__(self): # Vietnamese stopwords to exclude self.stopwords = set([ 'và', 'của', 'có', 'cho', 'với', 'từ', 'này', 'được', 'là', 'để', 'một', 'các', 'trong', 'không', 'đã', 'rất', 'cũng', 'nhưng', 'thì', 'bị', 'khi', 'nếu', 'như', 'về', 'tôi', 'bạn', 'mình', 'nó', 'họ', 'em', 'anh', 'chị', 'vì', 'nên', 'đến', 'lại', 'ra', 'đang', 'sẽ', 'đều', 'hay', 'thế', 'làm', 'rồi', 'đó', 'ở', 'thấy', 'còn', 'shop', 'sp', 'sản phẩm', 'hàng', 'đơn', 'giao' ]) def extract_ngrams(self, texts: List[str], n: int = 2, top_k: int = 15) -> List[Dict[str, Any]]: """Extract top n-grams from list of texts""" all_ngrams = [] for text in texts: # Tokenize words = self._tokenize(text) # Filter stopwords words = [w for w in words if w.lower() not in self.stopwords and len(w) > 1] # Generate n-grams for i in range(len(words) - n + 1): ngram = ' '.join(words[i:i+n]) all_ngrams.append(ngram) # Count and get top k counter = Counter(all_ngrams) top_ngrams = counter.most_common(top_k) return [{'ngram': ngram, 'count': count} for ngram, count in top_ngrams] def _tokenize(self, text: str) -> List[str]: """Simple tokenization for Vietnamese""" # Remove special characters but keep Vietnamese diacritics text = re.sub(r'[^\w\sàáảãạăắằẳẵặâấầẩẫậèéẻẽẹêếềểễệìíỉĩịòóỏõọôốồổỗộơớờởỡợùúủũụưứừửữựỳýỷỹỵđ]', ' ', text.lower()) return text.split() def analyze_single(self, text: str) -> Dict[str, List[Dict[str, Any]]]: """Analyze single text for unigrams, bigrams, trigrams""" return { 'unigrams': self.extract_ngrams([text], n=1, top_k=10), 'bigrams': self.extract_ngrams([text], n=2, top_k=10), 'trigrams': self.extract_ngrams([text], n=3, top_k=10) } def analyze_batch(self, texts: List[str]) -> Dict[str, List[Dict[str, Any]]]: """Analyze batch of texts for n-grams""" return { 'unigrams': self.extract_ngrams(texts, n=1, top_k=15), 'bigrams': self.extract_ngrams(texts, n=2, top_k=15), 'trigrams': self.extract_ngrams(texts, n=3, top_k=10) } class MLPredictionService: """ ML Service with lazy loading. Fetches heavy model weights from external Hugging Face Model Repo to bypass the 1GB limit of Space Git Repo. """ def __init__(self): """Initialize service without loading model (lazy loading)""" # Model components self.model: Optional[Any] = None self.tokenizer: Optional[Any] = None self.device: Optional[str] = None self.model_loaded = False # [SỬA ĐỔI] Không set đường dẫn cứng ở đây nữa vì file không còn ở máy # Chúng ta sẽ định nghĩa Repo ID chứa model ở đây self.MODEL_REPO_ID = "vtdung23/my-phobert-models" self.MODEL_FILENAME = "best_phoBER.pth" # Initialize analyzers self.keyword_analyzer = KeywordAnalyzer() self.ngram_analyzer = NgramAnalyzer() print("✅ ML Service initialized (Model will download & load on first request)") def _load_model(self): """Load model and tokenizer (called on first request)""" if self.model_loaded: return print("🔄 Loading ML model (first request)...") # Import heavy dependencies only when needed import torch from transformers import AutoTokenizer, RobertaForSequenceClassification # Determine device self.device = "cuda" if torch.cuda.is_available() else "cpu" print(f"📍 Using device: {self.device}") # [SỬA ĐỔI 1] Load Tokenizer từ gốc vinai/phobert-base # Vì folder tokenizer local đã bị xóa, ta load thẳng từ thư viện gốc cho an toàn print("📦 Loading tokenizer from vinai/phobert-base...") self.tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base", use_fast=False) # [SỬA ĐỔI 2] Tải file weights từ Kho Model riêng về print(f"⬇️ Downloading weights from repo: {self.MODEL_REPO_ID}...") try: model_path = hf_hub_download( repo_id=self.MODEL_REPO_ID, filename=self.MODEL_FILENAME, repo_type="model" # Quan trọng: báo đây là kho Model ) print(f"✅ Downloaded weights to: {model_path}") except Exception as e: print(f"❌ Error downloading model: {e}") raise e # Load model architecture print("🧠 Loading PhoBERT architecture...") self.model = RobertaForSequenceClassification.from_pretrained( "vinai/phobert-base", num_labels=5, # Đảm bảo số này khớp với lúc bạn train (0,1,2,3,4 hay 1-5?) problem_type="single_label_classification" ) # Load fine-tuned weights print("⚙️ Loading trained weights into architecture...") state_dict = torch.load(model_path, map_location=self.device, weights_only=False) self.model.load_state_dict(state_dict) # Set to evaluation mode and move to device self.model.eval() self.model.to(self.device) self.model_loaded = True print("✅ Model loaded successfully and ready to serve!") def predict_single(self, text: str) -> Dict[str, Any]: """Predict rating for a single comment""" # Lazy load model on first request self._load_model() import torch import torch.nn.functional as F # 1. Vietnamese preprocessing processed_text = self.preprocess(text) # 2. Tokenize encoded = self.tokenizer( processed_text, padding=True, truncation=True, max_length=256, return_tensors="pt" ) # Move tensors to device encoded = {k: v.to(self.device) for k, v in encoded.items()} # 3. Inference with torch.no_grad(): outputs = self.model(**encoded) logits = outputs.logits probs = F.softmax(logits, dim=1) # 4. Get prediction + confidence predicted_class = torch.argmax(probs, dim=1).item() confidence = probs[0][predicted_class].item() # 5. Convert 0-based label -> rating 1-5 # (Giả sử model train label 0 tương ứng 1 sao) rating = predicted_class + 1 return { 'rating': rating, 'confidence': confidence } def predict_with_explanation(self, text: str) -> Dict[str, Any]: """ Predict rating with explanation (word importance scores) Uses keyword-based importance for interpretability (safer than gradients) """ # Lazy load model on first request self._load_model() import torch import torch.nn.functional as F # 1. Vietnamese preprocessing processed_text = self.preprocess(text) # 2. Tokenize encoded = self.tokenizer( processed_text, padding=True, truncation=True, max_length=256, return_tensors="pt" ) # Move tensors to device encoded = {k: v.to(self.device) for k, v in encoded.items()} # 3. Standard inference (no gradients needed) with torch.no_grad(): outputs = self.model(**encoded) logits = outputs.logits probs = F.softmax(logits, dim=1) # Get predicted class predicted_class = torch.argmax(probs, dim=1).item() confidence = probs[0][predicted_class].item() # 4. Keyword-based importance (more reliable than gradient-based) tokens = self.tokenizer.convert_ids_to_tokens(encoded['input_ids'][0]) # Calculate importance based on keyword presence and position word_importance = [] for i, token in enumerate(tokens): if token not in ['', '', '', '']: # Clean token (remove BPE markers) clean_token = token.replace('@@', '').replace('▁', '').strip() if not clean_token: continue # Check if token is a keyword is_positive = any(kw in clean_token.lower() or clean_token.lower() in kw for kw in self.keyword_analyzer.positive_words) is_negative = any(kw in clean_token.lower() or clean_token.lower() in kw for kw in self.keyword_analyzer.negative_words) # Assign importance score if is_positive: score = 0.8 + (0.2 * (1 - i / len(tokens))) # Decay by position elif is_negative: score = -(0.8 + (0.2 * (1 - i / len(tokens)))) else: # Neutral words get small score based on prediction score = 0.2 if predicted_class >= 2 else -0.2 word_importance.append({ 'word': clean_token, 'score': round(score, 3) }) rating = predicted_class + 1 # Get keyword analysis for the full text keyword_analysis = self.keyword_analyzer.analyze(text) return { 'rating': rating, 'confidence': confidence, 'explanation': { 'words': [wi['word'] for wi in word_importance[:20]], 'importance_scores': [wi['score'] for wi in word_importance[:20]], 'overall_sentiment': 'positive' if rating >= 4 else ('negative' if rating <= 2 else 'neutral') }, 'keywords': keyword_analysis } def predict_batch(self, texts: List[str]) -> List[Dict[str, any]]: """Predict ratings for multiple comments""" results = [] for text in texts: # Có thể tối ưu bằng cách batch tokenize, nhưng loop đơn giản cho an toàn prediction = self.predict_single(text) results.append({ 'text': text, 'rating': prediction['rating'], 'confidence': prediction['confidence'] }) return results def predict_batch_with_analysis(self, texts: List[str]) -> Dict[str, Any]: """ Predict ratings for batch with additional analysis: - N-gram analysis - Keyword frequency - Rating distribution """ # Get predictions predictions = self.predict_batch(texts) # N-gram analysis ngram_analysis = self.ngram_analyzer.analyze_batch(texts) # Aggregate keyword analysis all_positive = [] all_negative = [] for text in texts: kw = self.keyword_analyzer.analyze(text) all_positive.extend(kw['positive_keywords']) all_negative.extend(kw['negative_keywords']) positive_freq = Counter(all_positive).most_common(10) negative_freq = Counter(all_negative).most_common(10) return { 'predictions': predictions, 'ngrams': ngram_analysis, 'keyword_frequency': { 'positive': [{'word': w, 'count': c} for w, c in positive_freq], 'negative': [{'word': w, 'count': c} for w, c in negative_freq] } } def analyze_ngrams(self, texts: List[str]) -> Dict[str, List[Dict[str, Any]]]: """Analyze n-grams for a list of texts""" return self.ngram_analyzer.analyze_batch(texts) def preprocess(self, text: str) -> str: """Preprocess Vietnamese text""" from underthesea import word_tokenize text = word_tokenize(text, format="text") return text # Singleton instance ml_service = MLPredictionService() def get_ml_service() -> MLPredictionService: return ml_service