Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import tensorflow as tf
|
| 5 |
from tensorflow.keras.models import load_model
|
| 6 |
from tensorflow.keras import backend as K
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
def dice_coef(y_true, y_pred):
|
| 10 |
y_true = K.cast(y_true, 'float32')
|
| 11 |
y_pred = K.cast(y_pred, 'float32')
|
|
@@ -14,38 +13,31 @@ def dice_coef(y_true, y_pred):
|
|
| 14 |
intersect = K.sum(y_true_f * y_pred_f)
|
| 15 |
return (2. * intersect + K.epsilon()) / (K.sum(y_true_f) + K.sum(y_pred_f) + K.epsilon())
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
model = load_model(model_path, custom_objects={'dice_coef': dice_coef}, compile=False)
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
# ---- Prediction function for Gradio ---- #
|
| 24 |
def predict(img):
|
| 25 |
-
|
| 26 |
-
img = img.convert("L")
|
| 27 |
-
|
| 28 |
-
# Resize
|
| 29 |
-
img_resized = img.resize(IMG_SIZE)
|
| 30 |
-
x = np.array(img_resized) / 255.0
|
| 31 |
-
x = np.expand_dims(x, axis=(0, -1)) # shape: (1, 224, 224, 1)
|
| 32 |
-
|
| 33 |
-
# Predict mask
|
| 34 |
pred = model.predict(x)[0]
|
| 35 |
-
mask = (pred > 0.5).astype(np.uint8) * 255
|
| 36 |
-
|
| 37 |
-
# Convert numpy mask to image
|
| 38 |
-
mask_img = Image.fromarray(mask.squeeze(), mode="L")
|
| 39 |
-
return mask_img
|
| 40 |
|
| 41 |
-
# ---- Gradio Interface ---- #
|
| 42 |
interface = gr.Interface(
|
| 43 |
fn=predict,
|
| 44 |
-
inputs=gr.Image(type="pil"
|
| 45 |
-
outputs=gr.Image(type="pil"
|
| 46 |
-
title="Brain Tumor Segmentation"
|
| 47 |
-
description="Upload a brain MRI image to generate a tumor segmentation mask."
|
| 48 |
)
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
interface.launch(
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
from tensorflow.keras.models import load_model
|
| 4 |
from tensorflow.keras import backend as K
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
+
# Custom metric
|
| 8 |
def dice_coef(y_true, y_pred):
|
| 9 |
y_true = K.cast(y_true, 'float32')
|
| 10 |
y_pred = K.cast(y_pred, 'float32')
|
|
|
|
| 13 |
intersect = K.sum(y_true_f * y_pred_f)
|
| 14 |
return (2. * intersect + K.epsilon()) / (K.sum(y_true_f) + K.sum(y_pred_f) + K.epsilon())
|
| 15 |
|
| 16 |
+
# Global variable for model
|
| 17 |
+
model = None
|
|
|
|
| 18 |
|
| 19 |
+
def get_model():
|
| 20 |
+
global model
|
| 21 |
+
if model is None:
|
| 22 |
+
# Load the .keras model only once when first needed
|
| 23 |
+
model = load_model("CNNSegmentation_model.keras", custom_objects={'dice_coef': dice_coef}, compile=False)
|
| 24 |
+
return model
|
| 25 |
|
|
|
|
| 26 |
def predict(img):
|
| 27 |
+
model = get_model()
|
| 28 |
+
img = img.convert("L").resize((224, 224))
|
| 29 |
+
x = np.expand_dims(np.expand_dims(np.array(img)/255.0, -1), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
pred = model.predict(x)[0]
|
| 31 |
+
mask = (pred > 0.5).astype(np.uint8) * 255
|
| 32 |
+
return Image.fromarray(mask.squeeze(), "L")
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
| 34 |
interface = gr.Interface(
|
| 35 |
fn=predict,
|
| 36 |
+
inputs=gr.Image(type="pil"),
|
| 37 |
+
outputs=gr.Image(type="pil"),
|
| 38 |
+
title="Brain Tumor Segmentation"
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
+
# Plain launch
|
| 42 |
+
interface.launch()
|
| 43 |
+
|