Spaces:
Sleeping
Sleeping
| # cond_imageใU-NetใฎforwardใงๆธกใใใผใธใงใณใฎControlNet-LLLiteๆค่จผ็จๅฎ่ฃ | |
| # ControlNet-LLLite implementation for verification with cond_image passed in U-Net's forward | |
| import os | |
| import re | |
| from typing import Optional, List, Type | |
| import torch | |
| from library import sdxl_original_unet | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| # input_blocksใซ้ฉ็จใใใใฉใใ / if True, input_blocks are not applied | |
| SKIP_INPUT_BLOCKS = False | |
| # output_blocksใซ้ฉ็จใใใใฉใใ / if True, output_blocks are not applied | |
| SKIP_OUTPUT_BLOCKS = True | |
| # conv2dใซ้ฉ็จใใใใฉใใ / if True, conv2d are not applied | |
| SKIP_CONV2D = False | |
| # transformer_blocksใฎใฟใซ้ฉ็จใใใใฉใใใTrueใฎๅ ดๅใResBlockใซใฏ้ฉ็จใใใชใ | |
| # if True, only transformer_blocks are applied, and ResBlocks are not applied | |
| TRANSFORMER_ONLY = True # if True, SKIP_CONV2D is ignored because conv2d is not used in transformer_blocks | |
| # Trueใชใattn1ใจattn2ใซใฎใฟ้ฉ็จใใffใชใฉใซใฏ้ฉ็จใใชใ / if True, apply only to attn1 and attn2, not to ff etc. | |
| ATTN1_2_ONLY = True | |
| # Trueใชใattn1ใฎQKVใattn2ใฎQใซใฎใฟ้ฉ็จใใใATTN1_2_ONLYๆๅฎๆใฎใฟๆๅน / if True, apply only to attn1 QKV and attn2 Q, only valid when ATTN1_2_ONLY is specified | |
| ATTN_QKV_ONLY = True | |
| # Trueใชใattn1ใffใชใฉใซใฎใฟ้ฉ็จใใattn2ใชใฉใซใฏ้ฉ็จใใชใ / if True, apply only to attn1 and ff, not to attn2 | |
| # ATTN1_2_ONLYใจๅๆใซTrueใซใงใใชใ / cannot be True at the same time as ATTN1_2_ONLY | |
| ATTN1_ETC_ONLY = False # True | |
| # transformer_blocksใฎๆๅคงใคใณใใใฏในใNoneใชใๅ จใฆใฎtransformer_blocksใซ้ฉ็จ | |
| # max index of transformer_blocks. if None, apply to all transformer_blocks | |
| TRANSFORMER_MAX_BLOCK_INDEX = None | |
| ORIGINAL_LINEAR = torch.nn.Linear | |
| ORIGINAL_CONV2D = torch.nn.Conv2d | |
| def add_lllite_modules(module: torch.nn.Module, in_dim: int, depth, cond_emb_dim, mlp_dim) -> None: | |
| # conditioning1ใฏconditioning imageใ embedding ใใใtimestepใใจใซๅผใฐใใชใ | |
| # conditioning1 embeds conditioning image. it is not called for each timestep | |
| modules = [] | |
| modules.append(ORIGINAL_CONV2D(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size | |
| if depth == 1: | |
| modules.append(torch.nn.ReLU(inplace=True)) | |
| modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
| elif depth == 2: | |
| modules.append(torch.nn.ReLU(inplace=True)) | |
| modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0)) | |
| elif depth == 3: | |
| # kernel size 8ใฏๅคงใใใใใฎใงใ4ใซใใ / kernel size 8 is too large, so set it to 4 | |
| modules.append(torch.nn.ReLU(inplace=True)) | |
| modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) | |
| modules.append(torch.nn.ReLU(inplace=True)) | |
| modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
| module.lllite_conditioning1 = torch.nn.Sequential(*modules) | |
| # downใงๅ ฅๅใฎๆฌกๅ ๆฐใๅๆธใใใLoRAใซใใณใใๅพใฆใใใใจใซใใ | |
| # midใงconditioning image embeddingใจๅ ฅๅใ็ตๅใใ | |
| # upใงๅ ใฎๆฌกๅ ๆฐใซๆปใ | |
| # ใใใใฏtimestepใใจใซๅผใฐใใ | |
| # reduce the number of input dimensions with down. inspired by LoRA | |
| # combine conditioning image embedding and input with mid | |
| # restore to the original dimension with up | |
| # these are called for each timestep | |
| module.lllite_down = torch.nn.Sequential( | |
| ORIGINAL_LINEAR(in_dim, mlp_dim), | |
| torch.nn.ReLU(inplace=True), | |
| ) | |
| module.lllite_mid = torch.nn.Sequential( | |
| ORIGINAL_LINEAR(mlp_dim + cond_emb_dim, mlp_dim), | |
| torch.nn.ReLU(inplace=True), | |
| ) | |
| module.lllite_up = torch.nn.Sequential( | |
| ORIGINAL_LINEAR(mlp_dim, in_dim), | |
| ) | |
| # Zero-Convใซใใ / set to Zero-Conv | |
| torch.nn.init.zeros_(module.lllite_up[0].weight) # zero conv | |
| class LLLiteLinear(ORIGINAL_LINEAR): | |
| def __init__(self, in_features: int, out_features: int, **kwargs): | |
| super().__init__(in_features, out_features, **kwargs) | |
| self.enabled = False | |
| def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0): | |
| self.enabled = True | |
| self.lllite_name = name | |
| self.cond_emb_dim = cond_emb_dim | |
| self.dropout = dropout | |
| self.multiplier = multiplier # ignored | |
| in_dim = self.in_features | |
| add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim) | |
| self.cond_image = None | |
| def set_cond_image(self, cond_image): | |
| self.cond_image = cond_image | |
| def forward(self, x): | |
| if not self.enabled: | |
| return super().forward(x) | |
| cx = self.lllite_conditioning1(self.cond_image) # make forward and backward compatible | |
| # reshape / b,c,h,w -> b,h*w,c | |
| n, c, h, w = cx.shape | |
| cx = cx.view(n, c, h * w).permute(0, 2, 1) | |
| cx = torch.cat([cx, self.lllite_down(x)], dim=2) | |
| cx = self.lllite_mid(cx) | |
| if self.dropout is not None and self.training: | |
| cx = torch.nn.functional.dropout(cx, p=self.dropout) | |
| cx = self.lllite_up(cx) * self.multiplier | |
| x = super().forward(x + cx) # ใใใงๅ ใฎใขใธใฅใผใซใๅผใณๅบใ / call the original module here | |
| return x | |
| class LLLiteConv2d(ORIGINAL_CONV2D): | |
| def __init__(self, in_channels: int, out_channels: int, kernel_size, **kwargs): | |
| super().__init__(in_channels, out_channels, kernel_size, **kwargs) | |
| self.enabled = False | |
| def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0): | |
| self.enabled = True | |
| self.lllite_name = name | |
| self.cond_emb_dim = cond_emb_dim | |
| self.dropout = dropout | |
| self.multiplier = multiplier # ignored | |
| in_dim = self.in_channels | |
| add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim) | |
| self.cond_image = None | |
| self.cond_emb = None | |
| def set_cond_image(self, cond_image): | |
| self.cond_image = cond_image | |
| self.cond_emb = None | |
| def forward(self, x): # , cond_image=None): | |
| if not self.enabled: | |
| return super().forward(x) | |
| cx = self.lllite_conditioning1(self.cond_image) | |
| cx = torch.cat([cx, self.down(x)], dim=1) | |
| cx = self.mid(cx) | |
| if self.dropout is not None and self.training: | |
| cx = torch.nn.functional.dropout(cx, p=self.dropout) | |
| cx = self.up(cx) * self.multiplier | |
| x = super().forward(x + cx) # ใใใงๅ ใฎใขใธใฅใผใซใๅผใณๅบใ / call the original module here | |
| return x | |
| class SdxlUNet2DConditionModelControlNetLLLite(sdxl_original_unet.SdxlUNet2DConditionModel): | |
| UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] | |
| UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] | |
| LLLITE_PREFIX = "lllite_unet" | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| def apply_lllite( | |
| self, | |
| cond_emb_dim: int = 16, | |
| mlp_dim: int = 16, | |
| dropout: Optional[float] = None, | |
| varbose: Optional[bool] = False, | |
| multiplier: Optional[float] = 1.0, | |
| ) -> None: | |
| def apply_to_modules( | |
| root_module: torch.nn.Module, | |
| target_replace_modules: List[torch.nn.Module], | |
| ) -> List[torch.nn.Module]: | |
| prefix = "lllite_unet" | |
| modules = [] | |
| for name, module in root_module.named_modules(): | |
| if module.__class__.__name__ in target_replace_modules: | |
| for child_name, child_module in module.named_modules(): | |
| is_linear = child_module.__class__.__name__ == "LLLiteLinear" | |
| is_conv2d = child_module.__class__.__name__ == "LLLiteConv2d" | |
| if is_linear or (is_conv2d and not SKIP_CONV2D): | |
| # block indexใใdepthใ่จ็ฎ: depthใฏconditioningใฎใตใคใบใใใฃใใซใ่จ็ฎใใใฎใซไฝฟใ | |
| # block index to depth: depth is using to calculate conditioning size and channels | |
| block_name, index1, index2 = (name + "." + child_name).split(".")[:3] | |
| index1 = int(index1) | |
| if block_name == "input_blocks": | |
| if SKIP_INPUT_BLOCKS: | |
| continue | |
| depth = 1 if index1 <= 2 else (2 if index1 <= 5 else 3) | |
| elif block_name == "middle_block": | |
| depth = 3 | |
| elif block_name == "output_blocks": | |
| if SKIP_OUTPUT_BLOCKS: | |
| continue | |
| depth = 3 if index1 <= 2 else (2 if index1 <= 5 else 1) | |
| if int(index2) >= 2: | |
| depth -= 1 | |
| else: | |
| raise NotImplementedError() | |
| lllite_name = prefix + "." + name + "." + child_name | |
| lllite_name = lllite_name.replace(".", "_") | |
| if TRANSFORMER_MAX_BLOCK_INDEX is not None: | |
| p = lllite_name.find("transformer_blocks") | |
| if p >= 0: | |
| tf_index = int(lllite_name[p:].split("_")[2]) | |
| if tf_index > TRANSFORMER_MAX_BLOCK_INDEX: | |
| continue | |
| # time embใฏ้ฉ็จๅคใจใใ | |
| # attn2ใฎconditioning (CLIPใใใฎๅ ฅๅ) ใฏshapeใ้ใใฎใง้ฉ็จใงใใชใ | |
| # time emb is not applied | |
| # attn2 conditioning (input from CLIP) cannot be applied because the shape is different | |
| if "emb_layers" in lllite_name or ( | |
| "attn2" in lllite_name and ("to_k" in lllite_name or "to_v" in lllite_name) | |
| ): | |
| continue | |
| if ATTN1_2_ONLY: | |
| if not ("attn1" in lllite_name or "attn2" in lllite_name): | |
| continue | |
| if ATTN_QKV_ONLY: | |
| if "to_out" in lllite_name: | |
| continue | |
| if ATTN1_ETC_ONLY: | |
| if "proj_out" in lllite_name: | |
| pass | |
| elif "attn1" in lllite_name and ( | |
| "to_k" in lllite_name or "to_v" in lllite_name or "to_out" in lllite_name | |
| ): | |
| pass | |
| elif "ff_net_2" in lllite_name: | |
| pass | |
| else: | |
| continue | |
| child_module.set_lllite(depth, cond_emb_dim, lllite_name, mlp_dim, dropout, multiplier) | |
| modules.append(child_module) | |
| return modules | |
| target_modules = SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE | |
| if not TRANSFORMER_ONLY: | |
| target_modules = target_modules + SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
| # create module instances | |
| self.lllite_modules = apply_to_modules(self, target_modules) | |
| logger.info(f"enable ControlNet LLLite for U-Net: {len(self.lllite_modules)} modules.") | |
| # def prepare_optimizer_params(self): | |
| def prepare_params(self): | |
| train_params = [] | |
| non_train_params = [] | |
| for name, p in self.named_parameters(): | |
| if "lllite" in name: | |
| train_params.append(p) | |
| else: | |
| non_train_params.append(p) | |
| logger.info(f"count of trainable parameters: {len(train_params)}") | |
| logger.info(f"count of non-trainable parameters: {len(non_train_params)}") | |
| for p in non_train_params: | |
| p.requires_grad_(False) | |
| # without this, an error occurs in the optimizer | |
| # RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn | |
| non_train_params[0].requires_grad_(True) | |
| for p in train_params: | |
| p.requires_grad_(True) | |
| return train_params | |
| # def prepare_grad_etc(self): | |
| # self.requires_grad_(True) | |
| # def on_epoch_start(self): | |
| # self.train() | |
| def get_trainable_params(self): | |
| return [p[1] for p in self.named_parameters() if "lllite" in p[0]] | |
| def save_lllite_weights(self, file, dtype, metadata): | |
| if metadata is not None and len(metadata) == 0: | |
| metadata = None | |
| org_state_dict = self.state_dict() | |
| # copy LLLite keys from org_state_dict to state_dict with key conversion | |
| state_dict = {} | |
| for key in org_state_dict.keys(): | |
| # split with ".lllite" | |
| pos = key.find(".lllite") | |
| if pos < 0: | |
| continue | |
| lllite_key = SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "." + key[:pos] | |
| lllite_key = lllite_key.replace(".", "_") + key[pos:] | |
| lllite_key = lllite_key.replace(".lllite_", ".") | |
| state_dict[lllite_key] = org_state_dict[key] | |
| if dtype is not None: | |
| for key in list(state_dict.keys()): | |
| v = state_dict[key] | |
| v = v.detach().clone().to("cpu").to(dtype) | |
| state_dict[key] = v | |
| if os.path.splitext(file)[1] == ".safetensors": | |
| from safetensors.torch import save_file | |
| save_file(state_dict, file, metadata) | |
| else: | |
| torch.save(state_dict, file) | |
| def load_lllite_weights(self, file, non_lllite_unet_sd=None): | |
| r""" | |
| LLLiteใฎ้ใฟใ่ชญใฟ่พผใพใชใ๏ผinitใใใๅคใไฝฟใ๏ผๅ ดๅใฏfileใซNoneใๆๅฎใใใ | |
| ใใฎๅ ดๅใnon_lllite_unet_sdใซใฏU-Netใฎstate_dictใๆๅฎใใใ | |
| If you do not want to load LLLite weights (use initialized values), specify None for file. | |
| In this case, specify the state_dict of U-Net for non_lllite_unet_sd. | |
| """ | |
| if not file: | |
| state_dict = self.state_dict() | |
| for key in non_lllite_unet_sd: | |
| if key in state_dict: | |
| state_dict[key] = non_lllite_unet_sd[key] | |
| info = self.load_state_dict(state_dict, False) | |
| return info | |
| if os.path.splitext(file)[1] == ".safetensors": | |
| from safetensors.torch import load_file | |
| weights_sd = load_file(file) | |
| else: | |
| weights_sd = torch.load(file, map_location="cpu") | |
| # module_name = module_name.replace("_block", "@blocks") | |
| # module_name = module_name.replace("_layer", "@layer") | |
| # module_name = module_name.replace("to_", "to@") | |
| # module_name = module_name.replace("time_embed", "time@embed") | |
| # module_name = module_name.replace("label_emb", "label@emb") | |
| # module_name = module_name.replace("skip_connection", "skip@connection") | |
| # module_name = module_name.replace("proj_in", "proj@in") | |
| # module_name = module_name.replace("proj_out", "proj@out") | |
| pattern = re.compile(r"(_block|_layer|to_|time_embed|label_emb|skip_connection|proj_in|proj_out)") | |
| # convert to lllite with U-Net state dict | |
| state_dict = non_lllite_unet_sd.copy() if non_lllite_unet_sd is not None else {} | |
| for key in weights_sd.keys(): | |
| # split with "." | |
| pos = key.find(".") | |
| if pos < 0: | |
| continue | |
| module_name = key[:pos] | |
| weight_name = key[pos + 1 :] # exclude "." | |
| module_name = module_name.replace(SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "_", "") | |
| # ใใใฏใใพใใใใชใใ้ๅคๆใ่ใใชใใฃใ่จญ่จใๆชใ / this does not work well. bad design because I didn't think about inverse conversion | |
| # module_name = module_name.replace("_", ".") | |
| # ใ ใใใใฉSDXLใฎU-Netใฎ "_" ใ "@" ใซๅคๆใใ / ugly but convert "_" of SDXL U-Net to "@" | |
| matches = pattern.findall(module_name) | |
| if matches is not None: | |
| for m in matches: | |
| logger.info(f"{module_name} {m}") | |
| module_name = module_name.replace(m, m.replace("_", "@")) | |
| module_name = module_name.replace("_", ".") | |
| module_name = module_name.replace("@", "_") | |
| lllite_key = module_name + ".lllite_" + weight_name | |
| state_dict[lllite_key] = weights_sd[key] | |
| info = self.load_state_dict(state_dict, False) | |
| return info | |
| def forward(self, x, timesteps=None, context=None, y=None, cond_image=None, **kwargs): | |
| for m in self.lllite_modules: | |
| m.set_cond_image(cond_image) | |
| return super().forward(x, timesteps, context, y, **kwargs) | |
| def replace_unet_linear_and_conv2d(): | |
| logger.info("replace torch.nn.Linear and torch.nn.Conv2d to LLLiteLinear and LLLiteConv2d in U-Net") | |
| sdxl_original_unet.torch.nn.Linear = LLLiteLinear | |
| sdxl_original_unet.torch.nn.Conv2d = LLLiteConv2d | |
| if __name__ == "__main__": | |
| # ใใใใฐ็จ / for debug | |
| # sdxl_original_unet.USE_REENTRANT = False | |
| replace_unet_linear_and_conv2d() | |
| # test shape etc | |
| logger.info("create unet") | |
| unet = SdxlUNet2DConditionModelControlNetLLLite() | |
| logger.info("enable ControlNet-LLLite") | |
| unet.apply_lllite(32, 64, None, False, 1.0) | |
| unet.to("cuda") # .to(torch.float16) | |
| # from safetensors.torch import load_file | |
| # model_sd = load_file(r"E:\Work\SD\Models\sdxl\sd_xl_base_1.0_0.9vae.safetensors") | |
| # unet_sd = {} | |
| # # copy U-Net keys from unet_state_dict to state_dict | |
| # prefix = "model.diffusion_model." | |
| # for key in model_sd.keys(): | |
| # if key.startswith(prefix): | |
| # converted_key = key[len(prefix) :] | |
| # unet_sd[converted_key] = model_sd[key] | |
| # info = unet.load_lllite_weights("r:/lllite_from_unet.safetensors", unet_sd) | |
| # logger.info(info) | |
| # logger.info(unet) | |
| # logger.info number of parameters | |
| params = unet.prepare_params() | |
| logger.info(f"number of parameters {sum(p.numel() for p in params)}") | |
| # logger.info("type any key to continue") | |
| # input() | |
| unet.set_use_memory_efficient_attention(True, False) | |
| unet.set_gradient_checkpointing(True) | |
| unet.train() # for gradient checkpointing | |
| # # visualize | |
| # import torchviz | |
| # logger.info("run visualize") | |
| # controlnet.set_control(conditioning_image) | |
| # output = unet(x, t, ctx, y) | |
| # logger.info("make_dot") | |
| # image = torchviz.make_dot(output, params=dict(controlnet.named_parameters())) | |
| # logger.info("render") | |
| # image.format = "svg" # "png" | |
| # image.render("NeuralNet") # ใใใๆ้ใใใใใฎใงๆณจๆ / be careful because it takes a long time | |
| # input() | |
| import bitsandbytes | |
| optimizer = bitsandbytes.adam.Adam8bit(params, 1e-3) | |
| scaler = torch.cuda.amp.GradScaler(enabled=True) | |
| logger.info("start training") | |
| steps = 10 | |
| batch_size = 1 | |
| sample_param = [p for p in unet.named_parameters() if ".lllite_up." in p[0]][0] | |
| for step in range(steps): | |
| logger.info(f"step {step}") | |
| conditioning_image = torch.rand(batch_size, 3, 1024, 1024).cuda() * 2.0 - 1.0 | |
| x = torch.randn(batch_size, 4, 128, 128).cuda() | |
| t = torch.randint(low=0, high=10, size=(batch_size,)).cuda() | |
| ctx = torch.randn(batch_size, 77, 2048).cuda() | |
| y = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda() | |
| with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16): | |
| output = unet(x, t, ctx, y, conditioning_image) | |
| target = torch.randn_like(output) | |
| loss = torch.nn.functional.mse_loss(output, target) | |
| scaler.scale(loss).backward() | |
| scaler.step(optimizer) | |
| scaler.update() | |
| optimizer.zero_grad(set_to_none=True) | |
| logger.info(sample_param) | |
| # from safetensors.torch import save_file | |
| # logger.info("save weights") | |
| # unet.save_lllite_weights("r:/lllite_from_unet.safetensors", torch.float16, None) | |