Spaces:
Sleeping
Sleeping
| import math | |
| import argparse | |
| import os | |
| import time | |
| import torch | |
| from safetensors.torch import load_file, save_file | |
| from library import sai_model_spec, train_util | |
| import library.model_util as model_util | |
| import lora | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| def load_state_dict(file_name, dtype): | |
| if os.path.splitext(file_name)[1] == ".safetensors": | |
| sd = load_file(file_name) | |
| metadata = train_util.load_metadata_from_safetensors(file_name) | |
| else: | |
| sd = torch.load(file_name, map_location="cpu") | |
| metadata = {} | |
| for key in list(sd.keys()): | |
| if type(sd[key]) == torch.Tensor: | |
| sd[key] = sd[key].to(dtype) | |
| return sd, metadata | |
| def save_to_file(file_name, model, state_dict, dtype, metadata): | |
| if dtype is not None: | |
| for key in list(state_dict.keys()): | |
| if type(state_dict[key]) == torch.Tensor: | |
| state_dict[key] = state_dict[key].to(dtype) | |
| if os.path.splitext(file_name)[1] == ".safetensors": | |
| save_file(model, file_name, metadata=metadata) | |
| else: | |
| torch.save(model, file_name) | |
| def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype): | |
| text_encoder.to(merge_dtype) | |
| unet.to(merge_dtype) | |
| # create module map | |
| name_to_module = {} | |
| for i, root_module in enumerate([text_encoder, unet]): | |
| if i == 0: | |
| prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER | |
| target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE | |
| else: | |
| prefix = lora.LoRANetwork.LORA_PREFIX_UNET | |
| target_replace_modules = ( | |
| lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
| ) | |
| for name, module in root_module.named_modules(): | |
| if module.__class__.__name__ in target_replace_modules: | |
| for child_name, child_module in module.named_modules(): | |
| if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d": | |
| lora_name = prefix + "." + name + "." + child_name | |
| lora_name = lora_name.replace(".", "_") | |
| name_to_module[lora_name] = child_module | |
| for model, ratio in zip(models, ratios): | |
| logger.info(f"loading: {model}") | |
| lora_sd, _ = load_state_dict(model, merge_dtype) | |
| logger.info(f"merging...") | |
| for key in lora_sd.keys(): | |
| if "lora_down" in key: | |
| up_key = key.replace("lora_down", "lora_up") | |
| alpha_key = key[: key.index("lora_down")] + "alpha" | |
| # find original module for this lora | |
| module_name = ".".join(key.split(".")[:-2]) # remove trailing ".lora_down.weight" | |
| if module_name not in name_to_module: | |
| logger.info(f"no module found for LoRA weight: {key}") | |
| continue | |
| module = name_to_module[module_name] | |
| # logger.info(f"apply {key} to {module}") | |
| down_weight = lora_sd[key] | |
| up_weight = lora_sd[up_key] | |
| dim = down_weight.size()[0] | |
| alpha = lora_sd.get(alpha_key, dim) | |
| scale = alpha / dim | |
| # W <- W + U * D | |
| weight = module.weight | |
| if len(weight.size()) == 2: | |
| # linear | |
| if len(up_weight.size()) == 4: # use linear projection mismatch | |
| up_weight = up_weight.squeeze(3).squeeze(2) | |
| down_weight = down_weight.squeeze(3).squeeze(2) | |
| weight = weight + ratio * (up_weight @ down_weight) * scale | |
| elif down_weight.size()[2:4] == (1, 1): | |
| # conv2d 1x1 | |
| weight = ( | |
| weight | |
| + ratio | |
| * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
| * scale | |
| ) | |
| else: | |
| # conv2d 3x3 | |
| conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
| # logger.info(conved.size(), weight.size(), module.stride, module.padding) | |
| weight = weight + ratio * conved * scale | |
| module.weight = torch.nn.Parameter(weight) | |
| def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False): | |
| base_alphas = {} # alpha for merged model | |
| base_dims = {} | |
| merged_sd = {} | |
| v2 = None | |
| base_model = None | |
| for model, ratio in zip(models, ratios): | |
| logger.info(f"loading: {model}") | |
| lora_sd, lora_metadata = load_state_dict(model, merge_dtype) | |
| if lora_metadata is not None: | |
| if v2 is None: | |
| v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string | |
| if base_model is None: | |
| base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) | |
| # get alpha and dim | |
| alphas = {} # alpha for current model | |
| dims = {} # dims for current model | |
| for key in lora_sd.keys(): | |
| if "alpha" in key: | |
| lora_module_name = key[: key.rfind(".alpha")] | |
| alpha = float(lora_sd[key].detach().numpy()) | |
| alphas[lora_module_name] = alpha | |
| if lora_module_name not in base_alphas: | |
| base_alphas[lora_module_name] = alpha | |
| elif "lora_down" in key: | |
| lora_module_name = key[: key.rfind(".lora_down")] | |
| dim = lora_sd[key].size()[0] | |
| dims[lora_module_name] = dim | |
| if lora_module_name not in base_dims: | |
| base_dims[lora_module_name] = dim | |
| for lora_module_name in dims.keys(): | |
| if lora_module_name not in alphas: | |
| alpha = dims[lora_module_name] | |
| alphas[lora_module_name] = alpha | |
| if lora_module_name not in base_alphas: | |
| base_alphas[lora_module_name] = alpha | |
| logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}") | |
| # merge | |
| logger.info(f"merging...") | |
| for key in lora_sd.keys(): | |
| if "alpha" in key: | |
| continue | |
| if "lora_up" in key and concat: | |
| concat_dim = 1 | |
| elif "lora_down" in key and concat: | |
| concat_dim = 0 | |
| else: | |
| concat_dim = None | |
| lora_module_name = key[: key.rfind(".lora_")] | |
| base_alpha = base_alphas[lora_module_name] | |
| alpha = alphas[lora_module_name] | |
| scale = math.sqrt(alpha / base_alpha) * ratio | |
| scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。 | |
| if key in merged_sd: | |
| assert ( | |
| merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None | |
| ), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません" | |
| if concat_dim is not None: | |
| merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim) | |
| else: | |
| merged_sd[key] = merged_sd[key] + lora_sd[key] * scale | |
| else: | |
| merged_sd[key] = lora_sd[key] * scale | |
| # set alpha to sd | |
| for lora_module_name, alpha in base_alphas.items(): | |
| key = lora_module_name + ".alpha" | |
| merged_sd[key] = torch.tensor(alpha) | |
| if shuffle: | |
| key_down = lora_module_name + ".lora_down.weight" | |
| key_up = lora_module_name + ".lora_up.weight" | |
| dim = merged_sd[key_down].shape[0] | |
| perm = torch.randperm(dim) | |
| merged_sd[key_down] = merged_sd[key_down][perm] | |
| merged_sd[key_up] = merged_sd[key_up][:,perm] | |
| logger.info("merged model") | |
| logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}") | |
| # check all dims are same | |
| dims_list = list(set(base_dims.values())) | |
| alphas_list = list(set(base_alphas.values())) | |
| all_same_dims = True | |
| all_same_alphas = True | |
| for dims in dims_list: | |
| if dims != dims_list[0]: | |
| all_same_dims = False | |
| break | |
| for alphas in alphas_list: | |
| if alphas != alphas_list[0]: | |
| all_same_alphas = False | |
| break | |
| # build minimum metadata | |
| dims = f"{dims_list[0]}" if all_same_dims else "Dynamic" | |
| alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic" | |
| metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None) | |
| return merged_sd, metadata, v2 == "True" | |
| def merge(args): | |
| assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" | |
| def str_to_dtype(p): | |
| if p == "float": | |
| return torch.float | |
| if p == "fp16": | |
| return torch.float16 | |
| if p == "bf16": | |
| return torch.bfloat16 | |
| return None | |
| merge_dtype = str_to_dtype(args.precision) | |
| save_dtype = str_to_dtype(args.save_precision) | |
| if save_dtype is None: | |
| save_dtype = merge_dtype | |
| if args.sd_model is not None: | |
| logger.info(f"loading SD model: {args.sd_model}") | |
| text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model) | |
| merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype) | |
| if args.no_metadata: | |
| sai_metadata = None | |
| else: | |
| merged_from = sai_model_spec.build_merged_from([args.sd_model] + args.models) | |
| title = os.path.splitext(os.path.basename(args.save_to))[0] | |
| sai_metadata = sai_model_spec.build_metadata( | |
| None, | |
| args.v2, | |
| args.v2, | |
| False, | |
| False, | |
| False, | |
| time.time(), | |
| title=title, | |
| merged_from=merged_from, | |
| is_stable_diffusion_ckpt=True, | |
| ) | |
| if args.v2: | |
| # TODO read sai modelspec | |
| logger.warning( | |
| "Cannot determine if model is for v-prediction, so save metadata as v-prediction / modelがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します" | |
| ) | |
| logger.info(f"saving SD model to: {args.save_to}") | |
| model_util.save_stable_diffusion_checkpoint( | |
| args.v2, args.save_to, text_encoder, unet, args.sd_model, 0, 0, sai_metadata, save_dtype, vae | |
| ) | |
| else: | |
| state_dict, metadata, v2 = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle) | |
| logger.info(f"calculating hashes and creating metadata...") | |
| model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
| metadata["sshs_model_hash"] = model_hash | |
| metadata["sshs_legacy_hash"] = legacy_hash | |
| if not args.no_metadata: | |
| merged_from = sai_model_spec.build_merged_from(args.models) | |
| title = os.path.splitext(os.path.basename(args.save_to))[0] | |
| sai_metadata = sai_model_spec.build_metadata( | |
| state_dict, v2, v2, False, True, False, time.time(), title=title, merged_from=merged_from | |
| ) | |
| if v2: | |
| # TODO read sai modelspec | |
| logger.warning( | |
| "Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します" | |
| ) | |
| metadata.update(sai_metadata) | |
| logger.info(f"saving model to: {args.save_to}") | |
| save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata) | |
| def setup_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む") | |
| parser.add_argument( | |
| "--save_precision", | |
| type=str, | |
| default=None, | |
| choices=[None, "float", "fp16", "bf16"], | |
| help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| default="float", | |
| choices=["float", "fp16", "bf16"], | |
| help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", | |
| ) | |
| parser.add_argument( | |
| "--sd_model", | |
| type=str, | |
| default=None, | |
| help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする", | |
| ) | |
| parser.add_argument( | |
| "--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors" | |
| ) | |
| parser.add_argument( | |
| "--models", type=str, nargs="*", help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors" | |
| ) | |
| parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") | |
| parser.add_argument( | |
| "--no_metadata", | |
| action="store_true", | |
| help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
| + "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
| ) | |
| parser.add_argument( | |
| "--concat", | |
| action="store_true", | |
| help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / " | |
| + "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)", | |
| ) | |
| parser.add_argument( | |
| "--shuffle", | |
| action="store_true", | |
| help="shuffle lora weight./ " | |
| + "LoRAの重みをシャッフルする", | |
| ) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = setup_parser() | |
| args = parser.parse_args() | |
| merge(args) | |