Spaces:
Sleeping
Sleeping
| import argparse | |
| import itertools | |
| import json | |
| import os | |
| import re | |
| import time | |
| import torch | |
| from safetensors.torch import load_file, save_file | |
| from tqdm import tqdm | |
| from library import sai_model_spec, train_util | |
| import library.model_util as model_util | |
| import lora | |
| from library.utils import setup_logging | |
| setup_logging() | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| CLAMP_QUANTILE = 0.99 | |
| ACCEPTABLE = [12, 17, 20, 26] | |
| SDXL_LAYER_NUM = [12, 20] | |
| LAYER12 = { | |
| "BASE": True, | |
| "IN00": False, | |
| "IN01": False, | |
| "IN02": False, | |
| "IN03": False, | |
| "IN04": True, | |
| "IN05": True, | |
| "IN06": False, | |
| "IN07": True, | |
| "IN08": True, | |
| "IN09": False, | |
| "IN10": False, | |
| "IN11": False, | |
| "MID": True, | |
| "OUT00": True, | |
| "OUT01": True, | |
| "OUT02": True, | |
| "OUT03": True, | |
| "OUT04": True, | |
| "OUT05": True, | |
| "OUT06": False, | |
| "OUT07": False, | |
| "OUT08": False, | |
| "OUT09": False, | |
| "OUT10": False, | |
| "OUT11": False, | |
| } | |
| LAYER17 = { | |
| "BASE": True, | |
| "IN00": False, | |
| "IN01": True, | |
| "IN02": True, | |
| "IN03": False, | |
| "IN04": True, | |
| "IN05": True, | |
| "IN06": False, | |
| "IN07": True, | |
| "IN08": True, | |
| "IN09": False, | |
| "IN10": False, | |
| "IN11": False, | |
| "MID": True, | |
| "OUT00": False, | |
| "OUT01": False, | |
| "OUT02": False, | |
| "OUT03": True, | |
| "OUT04": True, | |
| "OUT05": True, | |
| "OUT06": True, | |
| "OUT07": True, | |
| "OUT08": True, | |
| "OUT09": True, | |
| "OUT10": True, | |
| "OUT11": True, | |
| } | |
| LAYER20 = { | |
| "BASE": True, | |
| "IN00": True, | |
| "IN01": True, | |
| "IN02": True, | |
| "IN03": True, | |
| "IN04": True, | |
| "IN05": True, | |
| "IN06": True, | |
| "IN07": True, | |
| "IN08": True, | |
| "IN09": False, | |
| "IN10": False, | |
| "IN11": False, | |
| "MID": True, | |
| "OUT00": True, | |
| "OUT01": True, | |
| "OUT02": True, | |
| "OUT03": True, | |
| "OUT04": True, | |
| "OUT05": True, | |
| "OUT06": True, | |
| "OUT07": True, | |
| "OUT08": True, | |
| "OUT09": False, | |
| "OUT10": False, | |
| "OUT11": False, | |
| } | |
| LAYER26 = { | |
| "BASE": True, | |
| "IN00": True, | |
| "IN01": True, | |
| "IN02": True, | |
| "IN03": True, | |
| "IN04": True, | |
| "IN05": True, | |
| "IN06": True, | |
| "IN07": True, | |
| "IN08": True, | |
| "IN09": True, | |
| "IN10": True, | |
| "IN11": True, | |
| "MID": True, | |
| "OUT00": True, | |
| "OUT01": True, | |
| "OUT02": True, | |
| "OUT03": True, | |
| "OUT04": True, | |
| "OUT05": True, | |
| "OUT06": True, | |
| "OUT07": True, | |
| "OUT08": True, | |
| "OUT09": True, | |
| "OUT10": True, | |
| "OUT11": True, | |
| } | |
| assert len([v for v in LAYER12.values() if v]) == 12 | |
| assert len([v for v in LAYER17.values() if v]) == 17 | |
| assert len([v for v in LAYER20.values() if v]) == 20 | |
| assert len([v for v in LAYER26.values() if v]) == 26 | |
| RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
| def get_lbw_block_index(lora_name: str, is_sdxl: bool = False) -> int: | |
| # lbw block index is 0-based, but 0 for text encoder, so we return 0 for text encoder | |
| if "text_model_encoder_" in lora_name: # LoRA for text encoder | |
| return 0 | |
| # lbw block index is 1-based for U-Net, and no "input_blocks.0" in CompVis SD, so "input_blocks.1" have index 2 | |
| block_idx = -1 # invalid lora name | |
| if not is_sdxl: | |
| NUM_OF_BLOCKS = 12 # up/down blocks | |
| m = RE_UPDOWN.search(lora_name) | |
| if m: | |
| g = m.groups() | |
| up_down = g[0] | |
| i = int(g[1]) | |
| j = int(g[3]) | |
| if up_down == "down": | |
| if g[2] == "resnets" or g[2] == "attentions": | |
| idx = 3 * i + j + 1 | |
| elif g[2] == "downsamplers": | |
| idx = 3 * (i + 1) | |
| else: | |
| return block_idx # invalid lora name | |
| elif up_down == "up": | |
| if g[2] == "resnets" or g[2] == "attentions": | |
| idx = 3 * i + j | |
| elif g[2] == "upsamplers": | |
| idx = 3 * i + 2 | |
| else: | |
| return block_idx # invalid lora name | |
| if g[0] == "down": | |
| block_idx = 1 + idx # 1-based index, down block index | |
| elif g[0] == "up": | |
| block_idx = 1 + NUM_OF_BLOCKS + 1 + idx # 1-based index, num blocks, mid block, up block index | |
| elif "mid_block_" in lora_name: | |
| block_idx = 1 + NUM_OF_BLOCKS # 1-based index, num blocks, mid block | |
| else: | |
| # SDXL: some numbers are skipped | |
| if lora_name.startswith("lora_unet_"): | |
| name = lora_name[len("lora_unet_") :] | |
| if name.startswith("time_embed_") or name.startswith("label_emb_"): # 1, No LoRA in sd-scripts | |
| block_idx = 1 | |
| elif name.startswith("input_blocks_"): # 1-8 to 2-9 | |
| block_idx = 1 + int(name.split("_")[2]) | |
| elif name.startswith("middle_block_"): # 13 | |
| block_idx = 13 | |
| elif name.startswith("output_blocks_"): # 0-8 to 14-22 | |
| block_idx = 14 + int(name.split("_")[2]) | |
| elif name.startswith("out_"): # 23, No LoRA in sd-scripts | |
| block_idx = 23 | |
| return block_idx | |
| def load_state_dict(file_name, dtype): | |
| if os.path.splitext(file_name)[1] == ".safetensors": | |
| sd = load_file(file_name) | |
| metadata = train_util.load_metadata_from_safetensors(file_name) | |
| else: | |
| sd = torch.load(file_name, map_location="cpu") | |
| metadata = {} | |
| for key in list(sd.keys()): | |
| if type(sd[key]) == torch.Tensor: | |
| sd[key] = sd[key].to(dtype) | |
| return sd, metadata | |
| def save_to_file(file_name, state_dict, metadata): | |
| if os.path.splitext(file_name)[1] == ".safetensors": | |
| save_file(state_dict, file_name, metadata=metadata) | |
| else: | |
| torch.save(state_dict, file_name) | |
| def format_lbws(lbws): | |
| try: | |
| # lbwは"[1,1,1,1,1,1,1,1,1,1,1,1]"のような文字列で与えられることを期待している | |
| lbws = [json.loads(lbw) for lbw in lbws] | |
| except Exception: | |
| raise ValueError(f"format of lbws are must be json / 層別適用率はJSON形式で書いてください") | |
| assert all(isinstance(lbw, list) for lbw in lbws), f"lbws are must be list / 層別適用率はリストにしてください" | |
| assert len(set(len(lbw) for lbw in lbws)) == 1, "all lbws should have the same length / 層別適用率は同じ長さにしてください" | |
| assert all( | |
| len(lbw) in ACCEPTABLE for lbw in lbws | |
| ), f"length of lbw are must be in {ACCEPTABLE} / 層別適用率の長さは{ACCEPTABLE}のいずれかにしてください" | |
| assert all( | |
| all(isinstance(weight, (int, float)) for weight in lbw) for lbw in lbws | |
| ), f"values of lbs are must be numbers / 層別適用率の値はすべて数値にしてください" | |
| layer_num = len(lbws[0]) | |
| is_sdxl = True if layer_num in SDXL_LAYER_NUM else False | |
| FLAGS = { | |
| "12": LAYER12.values(), | |
| "17": LAYER17.values(), | |
| "20": LAYER20.values(), | |
| "26": LAYER26.values(), | |
| }[str(layer_num)] | |
| LBW_TARGET_IDX = [i for i, flag in enumerate(FLAGS) if flag] | |
| return lbws, is_sdxl, LBW_TARGET_IDX | |
| def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, merge_dtype): | |
| logger.info(f"new rank: {new_rank}, new conv rank: {new_conv_rank}") | |
| merged_sd = {} | |
| v2 = None # This is meaning LoRA Metadata v2, Not meaning SD2 | |
| base_model = None | |
| if lbws: | |
| lbws, is_sdxl, LBW_TARGET_IDX = format_lbws(lbws) | |
| else: | |
| is_sdxl = False | |
| LBW_TARGET_IDX = [] | |
| for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): | |
| logger.info(f"loading: {model}") | |
| lora_sd, lora_metadata = load_state_dict(model, merge_dtype) | |
| if lora_metadata is not None: | |
| if v2 is None: | |
| v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string | |
| if base_model is None: | |
| base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) | |
| if lbw: | |
| lbw_weights = [1] * 26 | |
| for index, value in zip(LBW_TARGET_IDX, lbw): | |
| lbw_weights[index] = value | |
| logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") | |
| # merge | |
| logger.info(f"merging...") | |
| for key in tqdm(list(lora_sd.keys())): | |
| if "lora_down" not in key: | |
| continue | |
| lora_module_name = key[: key.rfind(".lora_down")] | |
| down_weight = lora_sd[key] | |
| network_dim = down_weight.size()[0] | |
| up_weight = lora_sd[lora_module_name + ".lora_up.weight"] | |
| alpha = lora_sd.get(lora_module_name + ".alpha", network_dim) | |
| in_dim = down_weight.size()[1] | |
| out_dim = up_weight.size()[0] | |
| conv2d = len(down_weight.size()) == 4 | |
| kernel_size = None if not conv2d else down_weight.size()[2:4] | |
| # logger.info(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size) | |
| # make original weight if not exist | |
| if lora_module_name not in merged_sd: | |
| weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype) | |
| else: | |
| weight = merged_sd[lora_module_name] | |
| if device: | |
| weight = weight.to(device) | |
| # merge to weight | |
| if device: | |
| up_weight = up_weight.to(device) | |
| down_weight = down_weight.to(device) | |
| # W <- W + U * D | |
| scale = alpha / network_dim | |
| if lbw: | |
| index = get_lbw_block_index(key, is_sdxl) | |
| is_lbw_target = index in LBW_TARGET_IDX | |
| if is_lbw_target: | |
| scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける | |
| if device: # and isinstance(scale, torch.Tensor): | |
| scale = scale.to(device) | |
| if not conv2d: # linear | |
| weight = weight + ratio * (up_weight @ down_weight) * scale | |
| elif kernel_size == (1, 1): | |
| weight = ( | |
| weight | |
| + ratio | |
| * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
| * scale | |
| ) | |
| else: | |
| conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
| weight = weight + ratio * conved * scale | |
| merged_sd[lora_module_name] = weight.to("cpu") | |
| # extract from merged weights | |
| logger.info("extract new lora...") | |
| merged_lora_sd = {} | |
| with torch.no_grad(): | |
| for lora_module_name, mat in tqdm(list(merged_sd.items())): | |
| if device: | |
| mat = mat.to(device) | |
| conv2d = len(mat.size()) == 4 | |
| kernel_size = None if not conv2d else mat.size()[2:4] | |
| conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
| out_dim, in_dim = mat.size()[0:2] | |
| if conv2d: | |
| if conv2d_3x3: | |
| mat = mat.flatten(start_dim=1) | |
| else: | |
| mat = mat.squeeze() | |
| module_new_rank = new_conv_rank if conv2d_3x3 else new_rank | |
| module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
| U, S, Vh = torch.linalg.svd(mat) | |
| U = U[:, :module_new_rank] | |
| S = S[:module_new_rank] | |
| U = U @ torch.diag(S) | |
| Vh = Vh[:module_new_rank, :] | |
| dist = torch.cat([U.flatten(), Vh.flatten()]) | |
| hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
| low_val = -hi_val | |
| U = U.clamp(low_val, hi_val) | |
| Vh = Vh.clamp(low_val, hi_val) | |
| if conv2d: | |
| U = U.reshape(out_dim, module_new_rank, 1, 1) | |
| Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1]) | |
| up_weight = U | |
| down_weight = Vh | |
| merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous() | |
| merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous() | |
| merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu") | |
| # build minimum metadata | |
| dims = f"{new_rank}" | |
| alphas = f"{new_rank}" | |
| if new_conv_rank is not None: | |
| network_args = {"conv_dim": new_conv_rank, "conv_alpha": new_conv_rank} | |
| else: | |
| network_args = None | |
| metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, network_args) | |
| return merged_lora_sd, metadata, v2 == "True", base_model | |
| def merge(args): | |
| assert len(args.models) == len( | |
| args.ratios | |
| ), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" | |
| if args.lbws: | |
| assert len(args.models) == len( | |
| args.lbws | |
| ), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください" | |
| else: | |
| args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく | |
| def str_to_dtype(p): | |
| if p == "float": | |
| return torch.float | |
| if p == "fp16": | |
| return torch.float16 | |
| if p == "bf16": | |
| return torch.bfloat16 | |
| return None | |
| merge_dtype = str_to_dtype(args.precision) | |
| save_dtype = str_to_dtype(args.save_precision) | |
| if save_dtype is None: | |
| save_dtype = merge_dtype | |
| new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank | |
| state_dict, metadata, v2, base_model = merge_lora_models( | |
| args.models, args.ratios, args.lbws, args.new_rank, new_conv_rank, args.device, merge_dtype | |
| ) | |
| # cast to save_dtype before calculating hashes | |
| for key in list(state_dict.keys()): | |
| value = state_dict[key] | |
| if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: | |
| state_dict[key] = value.to(save_dtype) | |
| logger.info(f"calculating hashes and creating metadata...") | |
| model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
| metadata["sshs_model_hash"] = model_hash | |
| metadata["sshs_legacy_hash"] = legacy_hash | |
| if not args.no_metadata: | |
| is_sdxl = base_model is not None and base_model.lower().startswith("sdxl") | |
| merged_from = sai_model_spec.build_merged_from(args.models) | |
| title = os.path.splitext(os.path.basename(args.save_to))[0] | |
| sai_metadata = sai_model_spec.build_metadata( | |
| state_dict, v2, v2, is_sdxl, True, False, time.time(), title=title, merged_from=merged_from | |
| ) | |
| if v2: | |
| # TODO read sai modelspec | |
| logger.warning( | |
| "Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します" | |
| ) | |
| metadata.update(sai_metadata) | |
| logger.info(f"saving model to: {args.save_to}") | |
| save_to_file(args.save_to, state_dict, metadata) | |
| def setup_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--save_precision", | |
| type=str, | |
| default=None, | |
| choices=[None, "float", "fp16", "bf16"], | |
| help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| default="float", | |
| choices=["float", "fp16", "bf16"], | |
| help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", | |
| ) | |
| parser.add_argument( | |
| "--save_to", | |
| type=str, | |
| default=None, | |
| help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", | |
| ) | |
| parser.add_argument( | |
| "--models", | |
| type=str, | |
| nargs="*", | |
| help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors", | |
| ) | |
| parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") | |
| parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率") | |
| parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") | |
| parser.add_argument( | |
| "--new_conv_rank", | |
| type=int, | |
| default=None, | |
| help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ", | |
| ) | |
| parser.add_argument( | |
| "--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う" | |
| ) | |
| parser.add_argument( | |
| "--no_metadata", | |
| action="store_true", | |
| help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
| + "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
| ) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = setup_parser() | |
| args = parser.parse_args() | |
| merge(args) | |