Spaces:
Running
Running
Yanlin Zhang
commited on
Commit
·
ccd869c
1
Parent(s):
a5e9f68
use sam3 pipeline
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ import gradio as gr
|
|
| 20 |
import numpy as np
|
| 21 |
from PIL import Image
|
| 22 |
import torch
|
| 23 |
-
from transformers import
|
| 24 |
|
| 25 |
# -----------------------------------------------------------------------------
|
| 26 |
# Configuration
|
|
@@ -39,15 +39,18 @@ CLASS_COLORS: Dict[str, Tuple[int, int, int]] = {
|
|
| 39 |
}
|
| 40 |
|
| 41 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
-
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
| 43 |
|
| 44 |
# -----------------------------------------------------------------------------
|
| 45 |
# Model + processor
|
| 46 |
# -----------------------------------------------------------------------------
|
| 47 |
|
| 48 |
-
|
| 49 |
-
model
|
| 50 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
# -----------------------------------------------------------------------------
|
|
@@ -63,77 +66,119 @@ class Track:
|
|
| 63 |
score: float | None
|
| 64 |
|
| 65 |
|
| 66 |
-
def _post_process(outputs, height: int, width: int):
|
| 67 |
-
target_sizes = [(height, width)]
|
| 68 |
-
|
| 69 |
-
if hasattr(processor, "post_process_instance_segmentation"):
|
| 70 |
-
return processor.post_process_instance_segmentation(
|
| 71 |
-
outputs=outputs,
|
| 72 |
-
target_sizes=target_sizes,
|
| 73 |
-
threshold=0.35,
|
| 74 |
-
mask_threshold=0.4,
|
| 75 |
-
overlap_mask_area_threshold=0.5,
|
| 76 |
-
)[0]
|
| 77 |
-
|
| 78 |
-
if hasattr(processor, "post_process_semantic_segmentation"):
|
| 79 |
-
segmentation = processor.post_process_semantic_segmentation(
|
| 80 |
-
outputs=outputs,
|
| 81 |
-
target_sizes=target_sizes,
|
| 82 |
-
)[0]
|
| 83 |
-
return {
|
| 84 |
-
"masks": segmentation.unsqueeze(0),
|
| 85 |
-
"scores": torch.ones(1),
|
| 86 |
-
"labels": torch.zeros(1, dtype=torch.int64),
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
raise gr.Error(
|
| 90 |
-
"This version of transformers does not expose SAM3 post-processing helpers. "
|
| 91 |
-
"Please ensure transformers>=4.46.0 is installed."
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
def _extract_detections(frame_rgb: np.ndarray) -> List[Dict]:
|
| 96 |
pil_image = Image.fromarray(frame_rgb)
|
| 97 |
detections: List[Dict] = []
|
| 98 |
|
| 99 |
for label in TEXT_PROMPTS:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
masks = processed.get("masks", [])
|
| 111 |
-
scores = processed.get("scores", [None] * len(masks))
|
| 112 |
-
|
| 113 |
-
for mask_tensor, score in zip(masks, scores):
|
| 114 |
-
mask_np = mask_tensor.squeeze().detach().cpu().numpy()
|
| 115 |
-
if mask_np.ndim == 3:
|
| 116 |
-
mask_np = mask_np[0]
|
| 117 |
-
|
| 118 |
-
binary_mask = mask_np > 0.5
|
| 119 |
-
area = int(binary_mask.sum())
|
| 120 |
-
if area < MIN_MASK_PIXELS:
|
| 121 |
-
continue
|
| 122 |
|
| 123 |
-
|
| 124 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
continue
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
return detections
|
| 139 |
|
|
|
|
| 20 |
import numpy as np
|
| 21 |
from PIL import Image
|
| 22 |
import torch
|
| 23 |
+
from transformers import pipeline
|
| 24 |
|
| 25 |
# -----------------------------------------------------------------------------
|
| 26 |
# Configuration
|
|
|
|
| 39 |
}
|
| 40 |
|
| 41 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 42 |
|
| 43 |
# -----------------------------------------------------------------------------
|
| 44 |
# Model + processor
|
| 45 |
# -----------------------------------------------------------------------------
|
| 46 |
|
| 47 |
+
# Use pipeline as shown in Hugging Face guidance
|
| 48 |
+
# Then extract model and processor for text-prompt support
|
| 49 |
+
mask_pipe = pipeline("mask-generation", model=MODEL_ID, device=0 if DEVICE == "cuda" else -1)
|
| 50 |
+
|
| 51 |
+
# Extract model and processor from pipeline for direct text prompt usage
|
| 52 |
+
model = mask_pipe.model
|
| 53 |
+
processor = mask_pipe.feature_extractor if hasattr(mask_pipe, 'feature_extractor') else mask_pipe.image_processor
|
| 54 |
|
| 55 |
|
| 56 |
# -----------------------------------------------------------------------------
|
|
|
|
| 66 |
score: float | None
|
| 67 |
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
def _extract_detections(frame_rgb: np.ndarray) -> List[Dict]:
|
| 70 |
pil_image = Image.fromarray(frame_rgb)
|
| 71 |
detections: List[Dict] = []
|
| 72 |
|
| 73 |
for label in TEXT_PROMPTS:
|
| 74 |
+
# Use processor and model directly with text prompt
|
| 75 |
+
try:
|
| 76 |
+
inputs = processor(images=pil_image, text=label, return_tensors="pt")
|
| 77 |
+
inputs = {
|
| 78 |
+
k: (v.to(DEVICE) if isinstance(v, torch.Tensor) else v)
|
| 79 |
+
for k, v in inputs.items()
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
with torch.inference_mode():
|
| 83 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
# Extract masks from outputs - SAM3 outputs structure may vary
|
| 86 |
+
if hasattr(outputs, "pred_masks"):
|
| 87 |
+
masks = outputs.pred_masks
|
| 88 |
+
elif hasattr(outputs, "masks"):
|
| 89 |
+
masks = outputs.masks
|
| 90 |
+
elif isinstance(outputs, dict):
|
| 91 |
+
masks = outputs.get("pred_masks") or outputs.get("masks")
|
| 92 |
+
else:
|
| 93 |
+
masks = outputs
|
| 94 |
+
|
| 95 |
+
if masks is None:
|
| 96 |
continue
|
| 97 |
|
| 98 |
+
# Handle different mask formats
|
| 99 |
+
if isinstance(masks, torch.Tensor):
|
| 100 |
+
if masks.ndim == 4: # [batch, num_masks, H, W]
|
| 101 |
+
masks = masks[0] # Remove batch dimension
|
| 102 |
+
elif masks.ndim == 3: # [num_masks, H, W]
|
| 103 |
+
pass
|
| 104 |
+
else:
|
| 105 |
+
continue
|
| 106 |
+
|
| 107 |
+
for mask_tensor in masks:
|
| 108 |
+
mask_np = mask_tensor.squeeze().detach().cpu().numpy()
|
| 109 |
+
if mask_np.ndim == 3:
|
| 110 |
+
mask_np = mask_np[0]
|
| 111 |
+
|
| 112 |
+
binary_mask = mask_np > 0.5
|
| 113 |
+
area = int(binary_mask.sum())
|
| 114 |
+
if area < MIN_MASK_PIXELS:
|
| 115 |
+
continue
|
| 116 |
+
|
| 117 |
+
ys, xs = np.nonzero(binary_mask)
|
| 118 |
+
if len(xs) == 0:
|
| 119 |
+
continue
|
| 120 |
+
|
| 121 |
+
centroid = (float(xs.mean()), float(ys.mean()))
|
| 122 |
+
detections.append(
|
| 123 |
+
{
|
| 124 |
+
"label": label,
|
| 125 |
+
"mask": binary_mask,
|
| 126 |
+
"score": None,
|
| 127 |
+
"centroid": centroid,
|
| 128 |
+
"area": area,
|
| 129 |
+
}
|
| 130 |
+
)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
# Fallback to pipeline if direct access fails
|
| 133 |
+
try:
|
| 134 |
+
results = mask_pipe(pil_image)
|
| 135 |
+
if not isinstance(results, list):
|
| 136 |
+
results = [results]
|
| 137 |
+
|
| 138 |
+
for result in results:
|
| 139 |
+
if isinstance(result, dict):
|
| 140 |
+
mask = result.get("mask")
|
| 141 |
+
score = result.get("score")
|
| 142 |
+
else:
|
| 143 |
+
mask = result
|
| 144 |
+
score = None
|
| 145 |
+
|
| 146 |
+
if isinstance(mask, Image.Image):
|
| 147 |
+
mask_np = np.array(mask.convert("L"))
|
| 148 |
+
elif isinstance(mask, torch.Tensor):
|
| 149 |
+
mask_np = mask.squeeze().detach().cpu().numpy()
|
| 150 |
+
elif isinstance(mask, np.ndarray):
|
| 151 |
+
mask_np = mask
|
| 152 |
+
else:
|
| 153 |
+
continue
|
| 154 |
+
|
| 155 |
+
if mask_np.ndim == 3:
|
| 156 |
+
mask_np = mask_np[:, :, 0] if mask_np.shape[2] == 1 else mask_np.max(axis=2)
|
| 157 |
+
|
| 158 |
+
if mask_np.max() > 1.0:
|
| 159 |
+
mask_np = mask_np / 255.0
|
| 160 |
+
|
| 161 |
+
binary_mask = mask_np > 0.5
|
| 162 |
+
area = int(binary_mask.sum())
|
| 163 |
+
if area < MIN_MASK_PIXELS:
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
ys, xs = np.nonzero(binary_mask)
|
| 167 |
+
if len(xs) == 0:
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
centroid = (float(xs.mean()), float(ys.mean()))
|
| 171 |
+
detections.append(
|
| 172 |
+
{
|
| 173 |
+
"label": label,
|
| 174 |
+
"mask": binary_mask,
|
| 175 |
+
"score": float(score) if score is not None else None,
|
| 176 |
+
"centroid": centroid,
|
| 177 |
+
"area": area,
|
| 178 |
+
}
|
| 179 |
+
)
|
| 180 |
+
except Exception as e2:
|
| 181 |
+
raise gr.Error(f"Both direct model access and pipeline failed: {e2}")
|
| 182 |
|
| 183 |
return detections
|
| 184 |
|