Update pipeline.py
Browse files- pipeline.py +0 -22
pipeline.py
CHANGED
|
@@ -34,13 +34,6 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
|
|
| 34 |
|
| 35 |
"""
|
| 36 |
super().__init__()
|
| 37 |
-
# Register additional parameters for flexibility
|
| 38 |
-
# Explicitly assign required components
|
| 39 |
-
#self.unet = unet
|
| 40 |
-
#self.vae = vae
|
| 41 |
-
#self.text_encoder = text_encoder
|
| 42 |
-
#self.tokenizer = tokenizer
|
| 43 |
-
#self.scheduler = scheduler
|
| 44 |
|
| 45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
|
|
@@ -53,21 +46,6 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
|
|
| 53 |
text_encoder=text_encoder,
|
| 54 |
tokenizer=tokenizer,)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
#self.register_to_config(
|
| 58 |
-
# vae=vae.__class__.__name__,
|
| 59 |
-
# scheduler=scheduler.__class__.__name__,
|
| 60 |
-
# tokenizer=tokenizer.__class__.__name__,
|
| 61 |
-
# unet=unet.__class__.__name__,
|
| 62 |
-
# text_encoder=text_encoder.__class__.__name__,
|
| 63 |
-
# device=device,
|
| 64 |
-
# batch_size=None,
|
| 65 |
-
# num_inference_steps=None,
|
| 66 |
-
# guidance_scale=None,
|
| 67 |
-
# lift=None,
|
| 68 |
-
# seed=None,
|
| 69 |
-
#)
|
| 70 |
-
|
| 71 |
@torch.no_grad
|
| 72 |
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
| 73 |
"""get_batch.
|
|
|
|
| 34 |
|
| 35 |
"""
|
| 36 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
|
|
|
|
| 46 |
text_encoder=text_encoder,
|
| 47 |
tokenizer=tokenizer,)
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
@torch.no_grad
|
| 50 |
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
| 51 |
"""get_batch.
|