V2 first epoch ready
Looking much stronger.
V1 BAD END - V2 using qwen 2.5 math 1.5b
Will the Qwen 2.5 1.5b model cut through the noise?
======================================================================
GALAXY BRAIN COLLECTIVE - GSM8K FINAL RESULTS
======================================================================
Streams:
FUZZY: MathBERT (symbolic), T5 (linguistic)
DETERMINISTIC: Eigenspectrum, Cayley-Menger, Symbolic Calc, Fractal
| Epoch | Collective | MathBERT | T5 | Eigen | Cayley | Symbolic | Fractal | Ο |
|-------|------------|----------|-----|-------|--------|----------|---------|-------|
| 1 | 8.9% | 10.4% | 13.0% | 5.4% | 5.4% | 5.7% | 6.7% | 0.686 |
| 2 | 9.6% | 8.9% | 13.0% | 6.5% | 6.5% | 4.6% | 6.1% | 0.738 |
| 3 | 9.9% | 9.6% | 13.6% | 5.8% | 5.8% | 4.5% | 5.8% | 0.728 |
| 4 | 8.3% | 10.1% | 13.3% | 6.1% | 4.5% | 4.8% | 4.5% | 0.619 |
| 5 | 9.0% | 11.1% | 14.6% | 4.5% | 4.6% | 5.0% | 5.9% | 0.620 |
β Best epoch: 3 with collective accuracy 9.9%
β All checkpoints available at: https://huggingface.co/AbstractPhil/math_collective
Math Collective - Galaxy Brain Router
6-stream collective intelligence system for mathematical reasoning.
Architecture
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β GALAXY BRAIN COLLECTIVE β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β FUZZY STREAMS (learned representations) β
β βββ MathBERT (frozen) β Head A β "symbolic understanding" β
β βββ T5-base (frozen) β Head B β "linguistic reasoning" β
β β
β DETERMINISTIC STREAMS (pure computation) β
β βββ Eigenspectrum β Head C β "covariance geometry" β
β βββ Cayley-Menger β Head D β "distance geometry" β
β βββ Symbolic Calc β Head E β "actual arithmetic" β
β βββ Fractal Dim β Head F β "complexity measure" β
β β
β All 6 streams β Fusion β Classifier β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Key Innovation
Fuzzy + Deterministic Routing
The router learns WHEN to trust each stream:
- Simple arithmetic? Trust the Symbolic Calculator (deterministic)
- Complex word problem? Trust MathBERT/T5 (semantic)
- Ambiguous? Triangulate across all 6 perspectives
Streams
| Stream | Type | Source | Purpose |
|---|---|---|---|
| MathBERT | Fuzzy | tbs17/MathBERT (frozen) | Mathematical notation understanding |
| T5-base | Fuzzy | t5-base (frozen) | General language reasoning |
| Eigenspectrum | Deterministic | Covariance eigenvalues | Geometric structure of embeddings |
| Cayley-Menger | Deterministic | Distance matrix geometry | Simplex volume features |
| Symbolic | Deterministic | Regex + arithmetic | Actual number extraction & computation |
| Fractal | Deterministic | Correlation dimension | Problem complexity measure |
Training
- Dataset: GSM8K (Grade School Math 8K)
- Task: Answer magnitude bucket prediction (20 buckets)
- Frozen params: ~330M (MathBERT + T5)
- Trainable params: ~15M (routing heads, fusion, projections)
Emergence Metric (Ο)
Ο = collective_accuracy / max(individual_accuracies)
Ο > 1.0 = emergence (collective outperforms best individual)
Usage
from huggingface_hub import hf_hub_download
import torch
# Download checkpoint
checkpoint_path = hf_hub_download(
repo_id="AbstractPhil/math_collective",
filename="checkpoints/checkpoint_epoch_5.pt"
)
# Load and use (see geofractal-router for full implementation)
checkpoint = torch.load(checkpoint_path)
print(f"Epoch: {checkpoint['epoch']}")
print(f"Metrics: {checkpoint['metrics']}")
Related
- Framework: AbstractPhil/geofractal_router
- Paper: Coming soon
- Code: GitHub - geofractal
Citation
@misc{abstractphil2025mathcollective,
title={Math Collective: Galaxy Brain Routing for Mathematical Reasoning},
author={AbstractPhil},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/AbstractPhil/math_collective}
}
License
Apache 2.0
Model tree for AbstractPhil/math_collective_v1
Base model
google-t5/t5-base