See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloomz-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 25381d550887dd6e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/25381d550887dd6e_train_data.json
type:
field_input: operators
field_instruction: question_text
field_output: decomposition
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a8b12708-2aae-43c9-9def-7df8e7127f74
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 6528
micro_batch_size: 4
mlflow_experiment_name: /tmp/25381d550887dd6e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: d7f41241-8e43-47ec-9de5-2ca5bb717ff5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d7f41241-8e43-47ec-9de5-2ca5bb717ff5
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a8b12708-2aae-43c9-9def-7df8e7127f74
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2028
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3591
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 39.0838 | 0.0006 | 1 | 5.0617 |
| 5.0744 | 0.0557 | 100 | 0.5737 |
| 4.0586 | 0.1114 | 200 | 0.4370 |
| 3.4828 | 0.1671 | 300 | 0.3907 |
| 3.6622 | 0.2228 | 400 | 0.3530 |
| 2.7543 | 0.2785 | 500 | 0.3289 |
| 2.1382 | 0.3342 | 600 | 0.3228 |
| 2.8589 | 0.3899 | 700 | 0.3082 |
| 2.5821 | 0.4456 | 800 | 0.2919 |
| 1.8472 | 0.5013 | 900 | 0.2815 |
| 1.7843 | 0.5569 | 1000 | 0.2699 |
| 2.0657 | 0.6126 | 1100 | 0.2706 |
| 1.9569 | 0.6683 | 1200 | 0.2613 |
| 2.3046 | 0.7240 | 1300 | 0.2549 |
| 2.2584 | 0.7797 | 1400 | 0.2501 |
| 1.9766 | 0.8354 | 1500 | 0.2448 |
| 1.8655 | 0.8911 | 1600 | 0.2389 |
| 1.881 | 0.9468 | 1700 | 0.2374 |
| 1.5574 | 1.0025 | 1800 | 0.2298 |
| 1.422 | 1.0582 | 1900 | 0.2268 |
| 1.7154 | 1.1139 | 2000 | 0.2238 |
| 1.5083 | 1.1696 | 2100 | 0.2252 |
| 1.4274 | 1.2253 | 2200 | 0.2204 |
| 1.8438 | 1.2810 | 2300 | 0.2159 |
| 1.72 | 1.3367 | 2400 | 0.2144 |
| 1.4157 | 1.3924 | 2500 | 0.2137 |
| 1.6784 | 1.4481 | 2600 | 0.2107 |
| 1.3869 | 1.5038 | 2700 | 0.2092 |
| 1.4246 | 1.5595 | 2800 | 0.2077 |
| 1.4807 | 1.6151 | 2900 | 0.2070 |
| 1.0326 | 1.6708 | 3000 | 0.2067 |
| 1.6354 | 1.7265 | 3100 | 0.2044 |
| 1.4867 | 1.7822 | 3200 | 0.2049 |
| 1.1222 | 1.8379 | 3300 | 0.2035 |
| 1.6541 | 1.8936 | 3400 | 0.2048 |
| 1.2433 | 1.9493 | 3500 | 0.2028 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Alphatao/a8b12708-2aae-43c9-9def-7df8e7127f74
Base model
bigscience/bloomz-560m