GPT-Z
A fine-tuned version of openai/gpt-gpt-oss-120b optimized for chat applications.
Model Details
- Base Model: openai/gpt-gpt-oss-120b
- Fine-tuned by: Daemontatox
- Purpose: Chat/Conversational AI
- Training: Experimental dataset and fine-tuning methodology
- Parameters: 120B
- Language: English
Training
This model uses an experimental approach to fine-tuning with a custom dataset designed for conversational tasks.
Inference
Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Daemontatox/GPT-Z",
device_map="auto",
torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Daemontatox/GPT-Z")
messages = [
{"role": "user", "content": "Hello, how are you?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)
vLLM
from vllm import LLM, SamplingParams
llm = LLM(
model="Daemontatox/GPT-Z",
tensor_parallel_size=4, # Adjust based on GPU count
dtype="auto"
)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=512
)
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.outputs[0].text)
vLLM OpenAI-Compatible Server
vllm serve Daemontatox/GPT-Z \
--tensor-parallel-size 4 \
--dtype auto \
--max-model-len 4096
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123"
)
response = client.chat.completions.create(
model="Daemontatox/GPT-Z",
messages=[
{"role": "user", "content": "Hello, how are you?"}
],
temperature=0.7,
max_tokens=512
)
print(response.choices[0].message.content)
TensorRT-LLM
Convert to TensorRT-LLM format
convert_checkpoint.py \
--model_dir Daemontatox/GPT-Z \
--output_dir ./trt_ckpt \
--dtype float16 \
--tp_size 4
Build TensorRT engine
trtllm-build \
--checkpoint_dir ./trt_ckpt \
--output_dir ./trt_engine \
--gemm_plugin float16 \
--max_batch_size 8 \
--max_input_len 2048 \
--max_output_len 512
from tensorrt_llm import LLM
llm = LLM(model="./trt_engine")
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, max_new_tokens=512)
for output in outputs:
print(output.text)
Modular MAX
# Serve with MAX Engine
max serve Daemontatox/GPT-Z \
--port 8000 \
--tensor-parallel-size 4
from max import engine
# Load model with MAX
model = engine.InferenceSession(
"Daemontatox/GPT-Z",
device="cuda",
tensor_parallel=4
)
# Run inference
prompt = "Hello, how are you?"
output = model.generate(
prompt,
max_tokens=512,
temperature=0.7,
top_p=0.9
)
print(output.text)
# Using MAX with Python API
from max.serve import serve
from max.pipelines import pipeline
# Create pipeline
pipe = pipeline(
"text-generation",
model="Daemontatox/GPT-Z",
device="cuda",
tensor_parallel=4
)
# Generate
result = pipe(
"Hello, how are you?",
max_new_tokens=512,
temperature=0.7,
top_p=0.9
)
print(result[0]["generated_text"])
Limitations
As this uses experimental training methods, results may vary. Test thoroughly before production use.
- Downloads last month
- 79