Improve model card: Add library_name, science tag, GitHub link, and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,17 +1,25 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
| 3 |
datasets:
|
| 4 |
- MegaScience/MegaScience
|
| 5 |
language:
|
| 6 |
- en
|
|
|
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
-
base_model:
|
| 10 |
-
- meta-llama/Llama-3.1-8B
|
| 11 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
|
|
|
| 13 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
## Llama3.1-8B-MegaScience
|
| 16 |
|
| 17 |
### Training Recipe
|
|
@@ -39,6 +47,45 @@ pipeline_tag: text-generation
|
|
| 39 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/VogIpBbjfNxXFP9DfVMms.png" alt="Data Pipeline" style="width:100%;">
|
| 40 |
</div>
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
## Citation
|
| 43 |
|
| 44 |
Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you use our dataset or find our work useful, please cite
|
|
@@ -51,4 +98,4 @@ Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you
|
|
| 51 |
journal={arXiv preprint arXiv:2507.16812},
|
| 52 |
url={https://arxiv.org/abs/2507.16812}
|
| 53 |
}
|
| 54 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model:
|
| 3 |
+
- meta-llama/Llama-3.1-8B
|
| 4 |
datasets:
|
| 5 |
- MegaScience/MegaScience
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
+
license: llama3.1
|
| 9 |
metrics:
|
| 10 |
- accuracy
|
|
|
|
|
|
|
| 11 |
pipeline_tag: text-generation
|
| 12 |
+
library_name: transformers
|
| 13 |
+
tags:
|
| 14 |
+
- science
|
| 15 |
---
|
| 16 |
+
|
| 17 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
| 18 |
|
| 19 |
+
**Llama3.1-8B-MegaScience** is a model fine-tuned on **MegaScience**, a large-scale mixture of high-quality open-source scientific datasets totaling 1.25 million instances, as presented in the paper "MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning". The MegaScience dataset features truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. This model significantly outperforms corresponding official instruct models in average performance on scientific reasoning tasks and exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning.
|
| 20 |
+
|
| 21 |
+
For more details on the project, including the data curation pipeline and evaluation system, visit the [official GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation).
|
| 22 |
+
|
| 23 |
## Llama3.1-8B-MegaScience
|
| 24 |
|
| 25 |
### Training Recipe
|
|
|
|
| 47 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/VogIpBbjfNxXFP9DfVMms.png" alt="Data Pipeline" style="width:100%;">
|
| 48 |
</div>
|
| 49 |
|
| 50 |
+
### Usage
|
| 51 |
+
|
| 52 |
+
You can use the model with the `transformers` library:
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 56 |
+
import torch
|
| 57 |
+
|
| 58 |
+
model_id = "MegaScience/Llama3.1-8B-MegaScience"
|
| 59 |
+
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 62 |
+
model_id,
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
device_map="auto"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
messages = [
|
| 68 |
+
{"role": "user", "content": "Explain the concept of quantum entanglement."},
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
input_ids = tokenizer.apply_chat_template(
|
| 72 |
+
messages,
|
| 73 |
+
add_generation_prompt=True,
|
| 74 |
+
return_tensors="pt"
|
| 75 |
+
).to(model.device)
|
| 76 |
+
|
| 77 |
+
outputs = model.generate(
|
| 78 |
+
input_ids,
|
| 79 |
+
max_new_tokens=512,
|
| 80 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 81 |
+
do_sample=True,
|
| 82 |
+
temperature=0.7,
|
| 83 |
+
top_p=0.9
|
| 84 |
+
)
|
| 85 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 86 |
+
print(response)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
## Citation
|
| 90 |
|
| 91 |
Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you use our dataset or find our work useful, please cite
|
|
|
|
| 98 |
journal={arXiv preprint arXiv:2507.16812},
|
| 99 |
url={https://arxiv.org/abs/2507.16812}
|
| 100 |
}
|
| 101 |
+
```
|